The structural symmetry of a material can be manifested at a multitude of length scales such as spatial arrangement of atoms in a crystal structure, preferred orientation of grains in a polycrystalline material, alignment of reinforcing particles/fibers in composites or the micro-architecture of members in cellular solids. This paper proofs, in a simple yet rigorous manner, that six axes of fivefold structural symmetry is necessary and sufficient for isotropy of the elastic moduli tensor in the three-dimensional (3D) context.

References

1.
Christensen
,
R. M.
,
1987
, “
Sufficient Symmetry Conditions for Isotropy of the Elastic Moduli Tensor
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
772
777
.
2.
Christensen
,
R. M.
, and
Waals
,
F. M.
,
1972
, “
Effective Stiffness of Randomly Oriented Fibre Composites
,”
J. Compos. Mater.
,
6
(
3
), pp.
518
535
.
3.
Christensen
,
R. M.
,
1986
, “
Mechanics of Low Density Materials
,”
J. Mech. Phys. Solids
,
34
(
6
), pp.
563
578
.
4.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
5.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Oxford, UK
.
6.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
7.
Dresselhaus
,
M. S.
, and
Dresselhaus
,
G.
,
1991
, “
Note on Sufficient Symmetry Conditions for Isotropy of the Elastic Moduli Tensor
,”
J. Mater. Res.
,
6
(
05
), pp.
1114
1118
.
8.
Kearsley
,
E. A.
, and
Fong
,
J. T.
,
1975
, “
Linearly Independent Sets of Isotropic Cartesian Tensors of Ranks Up to Eight
,”
J. Res. Natl. Bureau Standards B
,
79B
(
1
), pp.
49
58
.https://nvlpubs.nist.gov/nistpubs/jres/79b/jresv79bn1-2p49_a1b.pdf
9.
Malvern
,
L. E.
,
1969
,
Introduction to the Mechanics of a Continuous Medium
(Prentice Hall Series in Engineering of the Physical Sciences),
Prentice Hall
,
Upper Saddle River, NJ
.
10.
Pronk
,
T. N.
,
Ayas
,
C.
, and
Tekglu
,
C.
,
2017
, “
A Quest for 2D Lattice Materials for Actuation
,”
J. Mech. Phys. Solids
,
105
, pp.
199
216
.
11.
Gurtner
,
G.
, and
Durand
,
M.
,
2014
, “
Stiffest Elastic Networks
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
470
(
2164
), p. 20130751.
12.
Tancogne-Dejean
,
T.
, and
Mohr
,
D.
,
2018
, “
Elastically-Isotropic Truss Lattice Materials of Reduced Plastic Anisotropy
,”
Int. J. Solids Struct.
,
138
, pp.
24
39
.
13.
Berger
,
J. B.
,
Wadley
,
H. N. G.
, and
McMeeking
,
R. M.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
537
.
You do not currently have access to this content.