The structural symmetry of a material can be manifested at a multitude of length scales such as spatial arrangement of atoms in a crystal structure, preferred orientation of grains in a polycrystalline material, alignment of reinforcing particles/fibers in composites or the micro-architecture of members in cellular solids. This paper proofs, in a simple yet rigorous manner, that six axes of fivefold structural symmetry is necessary and sufficient for isotropy of the elastic moduli tensor in the three-dimensional (3D) context.
Issue Section:
Technical Brief
References
1.
Christensen
, R. M.
, 1987
, “Sufficient Symmetry Conditions for Isotropy of the Elastic Moduli Tensor
,” ASME J. Appl. Mech.
, 54
(4
), pp. 772
–777
.2.
Christensen
, R. M.
, and Waals
, F. M.
, 1972
, “Effective Stiffness of Randomly Oriented Fibre Composites
,” J. Compos. Mater.
, 6
(3
), pp. 518
–535
.3.
Christensen
, R. M.
, 1986
, “Mechanics of Low Density Materials
,” J. Mech. Phys. Solids
, 34
(6
), pp. 563
–578
.4.
Gibson
, L. J.
, and Ashby
, M. F.
, 1997
, Cellular Solids: Structure and Properties
, 2nd ed., Cambridge University Press
, Cambridge, UK
.5.
Ashby
, M. F.
, Evans
, A. G.
, Fleck
, N. A.
, Gibson
, L. J.
, Hutchinson
, J. W.
, and Wadley
, H. N. G.
, 2000
, Metal Foams: A Design Guide
, Butterworth-Heinemann
, Oxford, UK
.6.
Deshpande
, V. S.
, Ashby
, M. F.
, and Fleck
, N. A.
, 2001
, “Foam Topology: Bending Versus Stretching Dominated Architectures
,” Acta Mater.
, 49
(6
), pp. 1035
–1040
.7.
Dresselhaus
, M. S.
, and Dresselhaus
, G.
, 1991
, “Note on Sufficient Symmetry Conditions for Isotropy of the Elastic Moduli Tensor
,” J. Mater. Res.
, 6
(05
), pp. 1114
–1118
.8.
Kearsley
, E. A.
, and Fong
, J. T.
, 1975
, “Linearly Independent Sets of Isotropic Cartesian Tensors of Ranks Up to Eight
,” J. Res. Natl. Bureau Standards B
, 79B
(1
), pp. 49
–58
.https://nvlpubs.nist.gov/nistpubs/jres/79b/jresv79bn1-2p49_a1b.pdf9.
Malvern
, L. E.
, 1969
, Introduction to the Mechanics of a Continuous Medium
(Prentice Hall Series in Engineering of the Physical Sciences), Prentice Hall
, Upper Saddle River, NJ
.10.
Pronk
, T. N.
, Ayas
, C.
, and Tekglu
, C.
, 2017
, “A Quest for 2D Lattice Materials for Actuation
,” J. Mech. Phys. Solids
, 105
, pp. 199
–216
.11.
Gurtner
, G.
, and Durand
, M.
, 2014
, “Stiffest Elastic Networks
,” Proc. R. Soc. London A: Math., Phys. Eng. Sci.
, 470
(2164
), p. 20130751.12.
Tancogne-Dejean
, T.
, and Mohr
, D.
, 2018
, “Elastically-Isotropic Truss Lattice Materials of Reduced Plastic Anisotropy
,” Int. J. Solids Struct.
, 138
, pp. 24
–39
.13.
Berger
, J. B.
, Wadley
, H. N. G.
, and McMeeking
, R. M.
, 2017
, “Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,” Nature
, 543
(7646
), pp. 533
–537
.Copyright © 2018 by ASME
You do not currently have access to this content.