Energy absorption structures are widely used in many scenarios. Thin-walled members have been heavily employed to absorb impact energy. This paper presents a novel, Ron Resch origami pattern inspired energy absorption structure. Experimental characterization and numerical simulations were conducted to study the energy absorption of this structure. The results show a new collapse mode in terms of energy absorption featuring multiple plastic hinge lines, which lead to the peak force reduction and larger effective stroke, as compared with the classical honeycomb structure. Overall, the Ron Resch origami-inspired structure and the classical honeycomb structure are quite complementary as energy absorption structures.

References

1.
Hou
,
S. J.
,
2008
, “
Multiobjective Optimization of Multi-Cell Sections for the Crashworthiness Design
,”
Int. J. Impact Eng.
,
35
(
11
), pp.
1355
1367
.
2.
Fang
,
H.
,
2005
, “
Numerical Simulations of Multiple Vehicle Crashes and Multidisciplinary Crashworthiness Optimization
,”
Int. J. Crashworthiness
,
10
(
2
), pp.
161
172
.
3.
Johnson
,
W.
, and
Walton
,
A. C.
,
1983
, “
Protection of Car Occupants in Frontal Impacts With Heavy Lorries: Frontal Structures
,”
Int. J. Impact Eng.
,
1
(
2
), pp.
111
123
.
4.
Alghamdi
,
A. A. A.
,
2001
, “
Collapsible Impact Energy Absorbers: An Overview
,”
Thin-Walled Struct.
,
39
(
2
), pp.
189
213
.
5.
Sun
,
G. Y.
,
2011
, “
Crashworthiness Design of Vehicle by Using Multiobjective Robust Optimization
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
99
110
.
6.
Reid
,
J. D.
, and
Sicking
,
D. L.
,
1998
, “
Design and Simulation of a Sequential Kinking Guardrail Terminal
,”
Int. J. Impact Eng.
,
21
(
9
), pp.
761
772
.
7.
Kanae
,
Y.
,
Sasaki
,
T.
, and
Shimamura
,
S.
,
1984
, “
Experimental and Analytical Studies on the Drop-Impact Test With Lead-Shielded Scale Model Radioactive Material Shipping Casks
,”
Structural Impact and Crashworthiness
, Vol.
2
, Elsevier, New York.
8.
Alghamdi
,
A. A. A.
,
2000
, “
Protection of Saudi Descent Roads Using Metallic Collapsible Energy Absorbers
,” KACST, Riyadh, Saudi Arabia, p.
74
, Final Report No. 98-2-74.
9.
Fairbairn
,
W.
,
1849
,
An Account of the Construction of the Britannia and Conway Tubular Bridges
, John Weale, London.
10.
Bryan
,
G. H.
,
1891
, “
On the Buckling of Simply Supported Rectangular Plates Uniformly Compressed in One Direction
,”
Proc. London Math. Soc.
,
22
, p.
54
.
11.
Alexander
,
J. M.
,
1960
, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading
,”
Q. J. Mech. Appl. Math.
,
13
(
1
), pp.
10
15
.
12.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
727
734
.
13.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.
14.
Abramowicz
,
W.
,
1983
, “
The Effective Crushing Distance in Axially Compressed Thin-Walled Metal Columns
,”
Int. J. Impact Eng.
,
1
(
3
), pp.
309
317
.
15.
Wierzbicki
,
T.
, and
Abromowics
,
W.
,
1981
, “
Crushing of Thin-Walled Strain Rate Sensitive Structures
,”
Eng. Trans.
,
29
(
1
), pp.
153
163
.
16.
Umeda
,
T.
,
2010
, “
Study of Energy Absorption Efficiency for a Few Thin-Walled Tubes in Axial Crushing
,”
J. Solid Mech. Mater. Eng.
,
4
(
7
), pp.
875
890
.
17.
Mahdi
,
E.
, and
Sebaey
,
T. A.
,
2014
, “
Crushing Behavior of Hybrid Hexagonal/Octagonal Cellular Composite System: Aramid/Carbon Hybrid Composite
,”
Mater. Des.
,
63
, pp.
6
13
.
18.
Fan
,
Z.
,
2013
, “
Quasi-Static Axial Compression of Thin-Walled Tubes With Different Cross-Sectional Shapes
,”
Eng. Struct.
,
55
, pp.
80
89
.
19.
Ma
,
J.
,
Le
,
Y.
, and
You
,
Z.
,
2010
, “
Axial Crushing Tests of Steel Thin-Walled Square Tubes With Pyramid Pattern
,”
AIAA
Paper No. 2010-2615.
20.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
21.
Zhou
,
C. H.
,
2017
, “
Crashworthiness Design for Trapezoid Origami Crash Boxes
,”
Thin-Walled Struct.
,
117
, pp.
257
267
.
22.
Giglio
,
M.
,
2012
, “
Investigations on Sandwich Core Properties Through an Experimental–Numerical Approach
,”
Compos. Part B
,
43
(
2
), pp.
361
374
.
23.
Ivanez
,
I.
,
2010
, “
FEM Analysis of Dynamic Flexural Behaviour of Composite Sandwich Beams With Foam Core
,”
Compos. Struct.
,
92
(
9
), pp.
2285
2291
.
24.
Sanchez-Saez
,
S.
,
2015
, “
Dynamic Crushing Behaviour of Agglomerated Cork
,”
Mater. Des.
,
65
, pp.
743
748
.
25.
Xiang
,
Y. F.
,
2016
, “
Comparative Analysis of Energy Absorption Capacity of Polygonal Tubes, Multi-Cell Tubes and Honeycombs by Utilizing Key Performance Indicators
,”
Mater. Des.
,
89
, pp.
689
696
.
26.
Zhang
,
X.
,
Cheng
,
G.
, and
You
,
Z.
,
2007
, “
Energy Absorption of Axially Compressed Thin-Walled Square Tubes With Patterns
,”
Thin-Walled Struct.
,
45
(
9
), pp.
737
746
.
27.
Adachi
,
T.
,
2008
, “
Energy Absorption of a Thin-Walled Cylinder With Ribs Subjected to Axial Impact
,”
Int. J. Impact Eng.
,
35
(
2
), pp.
65
79
.
28.
Song
,
J.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.
29.
Ma
,
J. Y.
,
2016
, “
Quasi-Static Axial Crushing of Thin-Walled Tubes With a Kite-Shape Rigid Origami Pattern: Numerical Simulation
,”
Thin-Walled Struct.
,
100
, pp.
38
47
.
30.
Yang
,
K.
,
2016
, “
Energy Absorption of Thin-Walled Tubes With Pre-Folded Origami Patterns: Numerical Simulation and Experimental Verification
,”
Thin-Walled Struct.
,
103
, pp.
33
44
.
31.
Li
,
S.
,
2016
, “
Recoverable and Programmable Collapse From Folding Pressurized Origami Cellular Solids
,”
Phys. Rev. Lett.
,
117
(
11
), p.
114301
.
32.
Wang
,
B.
, and
Zhou
,
C.
,
2017
, “
The Imperfection-Sensitivity of Origami Crash Boxes
,”
Int. J. Mech. Sci.
,
121
, pp.
58
66
.
33.
Zhou
,
C.
, and
Wang
,
B.
,
2017
, “
Origami Crash Boxes Subjected to Dynamic Oblique Loading
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091006
.
34.
Wang
,
F.
, and
Chen
,
C.
,
2017
, “
Patterning Curved Three-Dimensional Structures With Programmable Kirigami Designs
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061007
.
35.
Safsten
,
G.
,
Fillmore
,
T.
,
Logan
,
A.
,
Halverson
,
D.
, and
Howell
,
L.
,
2016
, “
Analyzing the Stability Properties of Kaleidocycles
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051001
.
36.
Wang
,
W.
, and
Qiu
,
X.
,
2017
, “
Coupling of Creases and Shells
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011009
.
37.
Lv
,
C.
, and
Jiang
,
H.
,
2014
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
,
4
(
1
), p.
5979
.
38.
Che
,
K.
, and
Meaud
,
J.
,
2016
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011004
.
39.
Hanna
,
B. H.
,
2015
, “
Force–Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081001
.
40.
Gardner
,
J. P.
,
2006
, “
The James Webb Space Telescope
,”
Space Sci. Rev.
,
123
(
4
), pp.
485
606
.
You do not currently have access to this content.