Abstract

The scattering of elastic waves in nanoporous materials is inevitably influenced by the surface effect of nanopores. In order to investigate such a dynamic problem with surface effect of nanomaterials, a new theory of nanoelastic dynamics is proposed, in which both the effect of surface free energy and the effect of surface inertia force are included. With the new theory, a scattering of plane compressional waves (P-wave) by a cylindrical nanocavity is analyzed, and the corresponding dynamic stress concentration factor (DSCF) around the nanocavity is analytically solved. It is found that, when the size of cavity is at a nanoscale, the surface energy effect leads to a reduction of the maximum DSCF comparing with the classical counterpart without surface effect, while the surface inertial effect enlarges the maximum DSCF. The surface inertial effect gradually becomes dominant over the surface energy effect with an increasing incident wave frequency. Although both kinds of surface effects tend to vanish with an increasing cavity radius, the surface inertial effect can exist in a submicron-sized cavity if the wave frequency is sufficiently high. All these results should be of guiding value not only for an optimal design of porous structure possessing a better dynamic load bearing capacity but also for the non-destructive detection of nano-defects.

References

1.
Graff
,
K. F.
,
2012
,
Wave Motion in Elastic Solids
,
Dover Publications
,
New York
.
2.
Tiwari
,
K. A.
,
Raisutis
,
R.
, and
Samaitis
,
V.
,
2017
, “
Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures
,”
Sensors
,
17
(
12
), pp.
1
21
. 10.1109/JSEN.2017.2693641
3.
Zhang
,
H.
,
Shi
,
C.
,
Liu
,
Z.
, and
Xu
,
N.
,
2019
, “
Scattering of Elastic Waves by a 3-D Inclusion in a Poroelastic Half Space
,”
Eng. Anal. Boundary Elem.
,
108
, pp.
133
148
. 10.1016/j.enganabound.2019.07.013
4.
Pao
,
Y. H.
, and
Mow
,
C. C.
,
1973
,
The Diffraction of Elastic Waves and Dynamic Stress Concentration
,
Crane, Russak
,
New York
.
5.
Surani
,
F. B.
,
Kong
,
X.
,
Panchal
,
D. B.
, and
Yu
,
Q.
,
2005
, “
Energy Absorption of a Nanoporous System Subjected to Dynamic Loadings
,”
Appl. Phys. Lett.
,
87
(
16
), p.
151919
. 10.1063/1.2106002
6.
Ou
,
Z. Y.
,
Wang
,
G. F.
, and
Wang
,
T. J.
,
2009
, “
An Analytical Solution for the Elastic Fields Near Spheroidal Nano-Inclusions
,”
Acta Mech. Sin.
,
25
(
6
), pp.
821
830
. 10.1007/s10409-009-0279-x
7.
Ulrichs
,
H.
,
Meyer
,
D.
,
Döring
,
F.
,
Eberl
,
C.
, and
Krebs
,
H.-U.
,
2017
, “
Spectral Control of Elastic Dynamics in Metallic Nano-Cavities
,”
Sci. Rep.
,
7
(
1
), p.
10600
. 10.1038/s41598-017-11099-y
8.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
. 10.1007/BF00261375
9.
Wang
,
J.
,
Huang
,
Z.
,
Duan
,
H.
,
Yu
,
S.
,
Feng
,
X.
,
Wang
,
G.
,
Zhang
,
W.
, and
Wang
,
T.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sin.
,
24
(
1
), pp.
52
82
. 10.1016/S0894-9166(11)60009-8
10.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
. 10.1016/0020-7683(78)90008-2
11.
Qiang
,
F.
,
Wei
,
P.
, and
Liu
,
X.
,
2013
, “
Propagation of Elastic Wave in Nanoporous Material With Distributed Cylindrical Nanoholes
,”
Sci. China Phys., Mech. Astronomy
,
56
(
8
), pp.
1542
1550
. 10.1007/s11433-013-5145-y
12.
Peng
,
X. L.
, and
Huang
,
G. Y.
,
2013
, “
Elastic Vibrations of a Cylindrical Nanotube With the Effect of Surface Stress and Surface Inertia
,”
Phys. E Low Dimens. Syst. Nanostruct.
,
54
(
8
), pp.
98
102
. 10.1016/j.physe.2013.06.009
13.
Ansari
,
R.
, and
Gholami
,
R.
,
2016
, “
Surface Effect on the Large Amplitude Periodic Forced Vibration of First-Order Shear Deformable Rectangular Nanoplates With Various Edge Supports
,”
Acta Astronaut.
,
118
, pp.
72
89
. 10.1016/j.actaastro.2015.09.020
14.
Wang
,
G. F.
,
Wang
,
T. J.
, and
Feng
,
X. Q.
,
2006
, “
Surface Effects on the Diffraction of Plane Compressional Waves by a Nanosized Circular Hole
,”
Appl. Phys. Lett.
,
89
(
23
), p.
231923
. 10.1063/1.2403899
15.
Zhang
,
Q.
,
Wang
,
G.
, and
Schiavone
,
P.
,
2011
, “
Diffraction of Plane Compressional Waves by an Array of Nanosized Cylindrical Holes
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021003
. 10.1115/1.4002529
16.
Ru
,
Y.
,
Wang
,
G. F.
,
Su
,
L. C.
, and
Wang
,
T. J.
,
2013
, “
Scattering of Vertical Shear Waves by a Cluster of Nanosized Cylindrical Holes With Surface Effect
,”
Acta Mech.
,
224
(
5
), pp.
935
944
. 10.1007/s00707-012-0797-7
17.
Liu
,
W.
,
Chen
,
J.
,
Liu
,
Y.
, and
Su
,
X.
,
2012
, “
Effect of Interface/Surface Stress on the Elastic Wave Band Structure of Two-Dimensional Phononic Crystals
,”
Phys. Lett. A
,
376
(
4
), pp.
605
609
. 10.1016/j.physleta.2011.11.043
18.
Qiang
,
F.
, and
Wei
,
P.
,
2015
, “
Effective Dynamic Properties of Random Nanoporous Materials With Consideration of Surface Effects
,”
Acta Mech.
,
226
(
4
), pp.
1201
1212
. 10.1007/s00707-014-1220-3
19.
Parvanova
,
S. L.
,
Manolis
,
G. D.
, and
Dineva
,
P. S.
,
2015
, “
Wave Scattering by Nanoheterogeneities Embedded in an Elastic Matrix via BEM
,”
Eng. Anal. Boundary Elem.
,
56
, pp.
57
69
. 10.1016/j.enganabound.2015.02.007
20.
Parvanova
,
S. L.
,
Vasilev
,
G. P.
,
Dineva
,
P. S.
, and
Manolis
,
G. D.
,
2016
, “
Dynamic Analysis of Nano-Heterogeneities in a Finite-Sized Solid by Boundary and Finite Element Methods
,”
Int. J. Solids Struct.
,
80
, pp.
1
18
. 10.1016/j.ijsolstr.2015.10.016
21.
Mi
,
C.
,
Jun
,
S.
,
Kouris
,
D. A.
, and
Kim
,
S. Y.
,
2008
, “
Atomistic Calculations of Interface Elastic Properties in Noncoherent Metallic Bilayers
,”
Phys. Rev. B
,
77
(
7
), pp.
439
446
.
22.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
. 10.1088/0957-4484/11/3/301
23.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic fcc Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
. 10.1103/PhysRevB.71.094104
24.
Ghavanloo
,
E.
,
Fazelzadeh
,
S. A.
, and
Rafii-Tabar
,
H.
,
2014
, “
Nonlocal Continuum-Based Modeling of Breathing Mode of Nanowires Including Surface Stress and Surface Inertia Effects
,”
Phys. B Physics Condens. Matter
,
440
, pp.
43
47
. 10.1016/j.physb.2014.01.018
25.
Peng
,
S. Z.
,
2005
, “
Flexural Wave Scattering and Dynamic Stress Concentration in a Heterogeneous Plate With Multiple Cylindrical Patches by Acoustical Wave Propagator Technique
,”
J. Sound Vib.
,
286
(
4
), pp.
729
743
. 10.1016/j.jsv.2004.10.015
26.
Shodja
,
H. M.
,
Ghafarollahi
,
A.
, and
Enzevaee
,
C.
,
2017
, “
Surface/Interface Effect on the Scattering of Love Waves by a Nano-Size Surface-Breaking Crack Within an Ultra-Thin Layer Bonded to an Elastic Half-Space
,”
Int. J. Solids Struct.
,
108
, pp.
63
73
. 10.1016/j.ijsolstr.2016.11.003
27.
Chen
,
S. H.
, and
Yao
,
Y.
,
2014
, “
Elastic Theory of Nanomaterials Based on Surface-Energy Density
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121002
. 10.1115/1.4028780
28.
Yao
,
Y.
,
Chen
,
S.
, and
Fang
,
D.
,
2017
, “
An Interface Energy Density-Based Theory Considering the Coherent Interface Effect in Nanomaterials
,”
J. Mech. Phys. Solids
,
99
, pp.
321
337
. 10.1016/j.jmps.2016.12.009
29.
Nix
,
W. D.
, and
Gao
,
H. J.
,
1998
, “
An Atomistic Interpretation of Interface Stress
,”
Scr. Mater.
,
39
(
12
), pp.
1653
1661
. 10.1016/S1359-6462(98)00352-2
30.
Woltersdorf
,
J.
,
Nepijko
,
A. S.
, and
Pippel
,
E.
,
1981
, “
Dependence of Lattice Parameters of Small Particles on the Size of the Nuclei
,”
Surf. Sci.
,
106
(
106
), pp.
64
69
. 10.1016/0039-6028(81)90182-5
31.
Zhang
,
C.
,
Yao
,
Y.
, and
Chen
,
S.
,
2014
, “
Size-dependent Surface Energy Density of Typically fcc Metallic Nanomaterials
,”
Comput. Mater. Sci.
,
82
(
3
), pp.
372
377
. 10.1016/j.commatsci.2013.10.015
32.
Brady
, and
George
,
S.
,
1986
,
Materials Handbook
,
McGraw-Hill Professional
,
New York
.
33.
Vitos
,
L.
,
Ruban
,
A. V.
,
Skriver
,
H. L.
, and
Kollár
,
J.
,
1998
, “
The Surface Energy of Metals
,”
Surf. Sci.
,
411
(
1–2
), pp.
186
202
. 10.1016/S0039-6028(98)00363-X
34.
Wasserman
,
H. J.
, and
Vermaak
,
J. S.
,
1970
, “
On the Determination of a Lattice Contraction in Very Small Silver Particles
,”
Surf. Sci.
,
22
(
1
), pp.
164
172
. 10.1016/0039-6028(70)90031-2
35.
Yao
,
Y.
,
Yang
,
Y.
, and
Chen
,
S.
,
2017
, “
Size-Dependent Elasticity of Nanoporous Materials Predicted by Surface Energy Density-Based Theory
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061004
. 10.1115/1.4036345
36.
Wang
,
Y.
,
Zhang
,
B.
,
Zhang
,
X.
,
Liu
,
J.
, and
Shen
,
H.
,
2019
, “
Two-dimensional Fretting Contact Analysis Considering Surface Effects
,”
Int. J. Solids Struct.
,
170
, pp.
68
81
. 10.1016/j.ijsolstr.2019.04.027
37.
Wang
,
L.
,
2020
, “
Surface Effect on Deformation Around an Elliptical Hole by Surface Energy Density Theory
,”
Math. Mech. Solids
,
25
(
2
), pp.
337
347
. 10.1177/1081286519876973
38.
Zhang
,
X.
,
Wang
,
Q. J.
,
Wang
,
Y.
,
Wang
,
Z.
,
Shen
,
H.
, and
Liu
,
J.
,
2018
, “
Contact Involving a Functionally Graded Elastic Thin Film and Considering Surface Effects
,”
Int. J. Solids Struct.
,
150
, pp.
184
196
. 10.1016/j.ijsolstr.2018.06.016
39.
Jia
,
N.
,
Yao
,
Y.
,
Yang
,
Y.
, and
Chen
,
S.
,
2017
, “
Size Effect in the Bending of a Timoshenko Nanobeam
,”
Acta Mech.
,
228
(
6
), pp.
2363
2375
. 10.1007/s00707-017-1835-2
40.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1951
,
Theory of Elasticity
,
McGraw Hill
,
New York
.
41.
Velasco
,
V. R.
, and
Garciamoliner
,
F.
,
1979
, “
Surface Effects in Elastic Surface Waves
,”
Phys. Scr.
,
20
(
1
), pp.
111
120
. 10.1088/0031-8949/20/1/021
42.
Enzevaee
,
C.
, and
Shodja
,
H. M.
,
2018
, “
Crystallography and Surface Effects on the Propagation of Love and Rayleigh Surface Waves in fcc Semi-Infinite Solids
,”
Int. J. Solids Struct.
,
138
, pp.
109
117
. 10.1016/j.ijsolstr.2018.01.003
43.
Sheng
,
H.
,
Kramer
,
M.
,
Cadien
,
A.
,
Fujita
,
T.
, and
Chen
,
M.
,
2011
, “
Highly Optimized Embedded-Atom-Method Potentials for Fourteen fcc Metals
,”
Phys. Rev. B
,
83
(
13
), p.
134118
. 10.1103/PhysRevB.83.134118
You do not currently have access to this content.