Abstract

In metal forming physical field analysis, finite element method (FEM) is a crucial tool, in which the mesh-density has a significant impact on the results. High mesh density usually contributes authentic to an increase in accuracy of the simulation results but costs more computing resources. To eliminate this drawback, we propose a data-driven mesh-density boosting model named SuperMeshingNet that uses low mesh-density physical field as inputs, to acquire high-density physical field with 2D structured grids instantaneously, shortening computing time and cost automatically. Moreover, the Res-UNet architecture and attention mechanism are utilized, enhancing the performance of SuperMeshingNet. Compared with the baseline that applied the linear interpolation method, SuperMeshingNet achieves a prominent reduction in the mean squared error (MSE) and mean absolute error (MAE) on the test data. The well-trained model can successfully show an improved performance than the baseline models on the multiple scaled mesh-density, including 2 ×, 4 ×, and 8 ×. Enhanced by SuperMeshingNet with broaden scaling of mesh density and high precision output, FEM can be accelerated with seldom computational time and cost with little accuracy sacrificed.

References

1.
Reddy
,
J. N.
,
1996
, “
Finite Element Procedures. K-j Bathe
,”
Appl. Mech. Rev.
,
11
, p.
B117
.
2.
Li
,
N.
,
Lin
,
J.
,
Dean
,
T. A.
,
Dry
,
D.
, and
Balint
,
D.
,
2014
, “
Materials Modelling for Selective Heating and Press Hardening of Boron Steel Panels With Graded Microstructures
,”
Procedia. Eng.
,
81
, pp.
1675
1681
. (
11th International Conference on Technology of Plasticity, ICTP 2014, 19–24 October 2014, Nagoya Congress Center, Nagoya, Japan
).
3.
Nicholson
,
D. W.
,
2008
,
Finite Element Analysis: Thermomechanics of Solids
,
CRC Press
,
Boca Raton, FL
.
4.
Cai
,
H.
,
2020
, “
A Fast Calculation Method for Steady State Performance of High Speed Traction Induction Machine by Finite Element Analysis
,”
2020 IEEE Energy Conversion Congress and Exposition (ECCE), Energy Conversion Congress and Exposition (ECCE), 2020 IEEE
, pp.
4284
4291
.
5.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
6.
Devlin
,
J.
,
Chang
,
M. W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2018
, “
Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding
.”
Arxiv
.
7.
Silver
,
D.
,
Schrittwieser
,
J.
,
Simonyan
,
K.
,
Antonoglou
,
I.
,
Huang
,
A.
,
Guez
,
A.
,
Hubert
,
T.
,
Baker
,
L.
,
Lai
,
M.
,
Bolton
,
A.
,
Chen
,
Y.
,
Lillicrap
,
T.
,
Hui
,
F.
,
Sifre
,
L.
,
Graepel
,
T.
, and
Hassabis
,
D.
,
2017
, “
Mastering the Game of Go Without Human Knowledge
,”
Nature
,
550
(
7676
), p.
354
.
8.
Kurtakoti
,
A. U.
, and
Chickerur
,
S.
,
2020
, “
Steady Flow Approximation Using Capsule Neural Networks
,”
2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), Multimedia Big Data (BigMM), 2020 IEEE Sixth International Conference on
, pp.
257
261
.
9.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
.”
Arxiv
.
10.
Rawat
,
S.
, and
Shen
,
M. H. H.
,
2019
, “
A Novel Topology Optimization Approach Using Conditional Deep Learning
.”
Arxiv
.
11.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
.”
Arxiv
.
12.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Deep Learning Approach to Estimate Stress Distribution: a Fast and Accurate Surrogate of Finite-element Analysis
,”
J. R. Soc. Interface
,
15
(
138
), p.
0844
.
13.
Jiang
,
H.
,
Nie
,
Z.
,
Yeo
,
R.
,
Farimani
,
A. B.
, and
Kara
,
L. B.
,
2020
, “
Stressgan: A Generative Deep Learning Model for 2d Stress Distribution Prediction
,”
Am. Soc. Mech. Eng., J. Appl. Mech.
,
88
(
5
), pp.
1
11
.
14.
Feng
,
Y.
,
Feng
,
Y.
,
You
,
H.
,
Zhao
,
X.
, and
Gao
,
Y.
,
2018
, “
Meshnet: Mesh Neural Network for 3d Shape Representation
.”
Arxiv
.
15.
Pan
,
J.
,
Li
,
J.
,
Han
,
X.
, and
Jia
,
K.
,
2018
, “
Residual Meshnet: Learning to Deform Meshes for Single-view 3d Reconstruction
,”
2018 International Conference on 3D Vision (3DV), 3D Vision (3DV), 2018 International Conference on, 3DV
, pp.
719
727
.
16.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Deep Residual Learning for Image Recognition
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Computer Vision and Pattern Recognition (CVPR)
.
17.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
.
18.
Cao
,
C.
,
Liu
,
X.
,
Yang
,
Y.
,
Yu
,
Y.
,
Wang
,
J.
,
Wang
,
Z.
,
Huang
,
Y.
,
Wang
,
L.
,
Huang
,
C.
,
Xu
,
W.
,
Ramanan
,
D.
, and
Huang
,
T. S.
,
2015
,
Look and Think Twice: Capturing Top-Down Visual Attention With Feedback Convolutional Neural Networks
.
19.
Li
,
K.
,
Wu
,
Z.
,
Peng
,
K.-C.
,
Ernst
,
J.
, and
Fu
,
Y.
,
2018
, “
Tell Me Where to Look: Guided Attention Inference Network
,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Computer Vision and Pattern Recognition (CVPR)
, pp.
9215
9223
.
20.
Elakkiya
,
E.
,
Selvakumar
,
S.
, and
Leela Velusamy
,
R.
,
2020
, “
Textspamdetector: Textual Content Based Deep Learning Framework for Social Spam Detection Using Conjoint Attention Mechanism
,”
J. Ambient Intell. Humanized Comput.
,
164
(
1
), p.
1
.
21.
Shi
,
W.
,
Caballero
,
J.
,
Huszar
,
F.
,
Totz
,
J.
,
Aitken
,
A. P.
,
Bishop
,
R.
,
Rueckert
,
D.
, and
Wang
,
Z.
,
2016
, “
Real-Time Single Image and Video Super-Resolution Using An Efficient Sub-pixel Convolutional Neural Network
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Computer Vision and Pattern Recognition (CVPR)
, pp.
1874
1883
.
22.
Ledig
,
C.
,
Theis
,
L.
,
Huszar
,
F.
,
Caballero
,
J.
,
Cunningham
,
A.
,
Acosta
,
A.
,
Aitken
,
A.
,
Tejani
,
A.
,
Totz
,
J.
,
Wang
,
Z.
, and
Shi
,
W.
,
2017
, “
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
.”
Arxiv
.
23.
Yoon
,
Y.
,
Jeon
,
H.-G.
,
Yoo
,
D.
,
Lee
,
J.-Y.
, and
Kweon
,
I. S.
,
2015
, “
Learning a Deep Convolutional Network for Light-Field Image Super-Resolution
,”
2015 IEEE International Conference on Computer Vision Workshop (ICCVW)
, pp.
57
65
.
24.
Lim
,
B.
,
Son
,
S.
,
Kim
,
H.
,
Nah
,
S.
, and
Lee
,
K. M.
,
2017
, “
Enhanced Deep Residual Networks for Single Image Super-Resolution
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
, pp.
1132
1140
.
25.
Xu
,
J.
,
Chae
,
Y.
,
Stenger
,
B.
, and
Datta
,
A.
,
2018
, “
Dense Bynet: Residual Dense Network for Image Super Resolution
,”
2018 25th IEEE International Conference on Image Processing (ICIP)
, pp.
71
75
.
26.
Yu-Wing
,
T.
,
Shuaicheng
,
L.
,
Brown
,
M.
, and
Lin
,
S.
,
2010
, “
Super Resolution Using Edge Prior and Single Image Detail Synthesis
,”
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp.
2400
2407
.
27.
Kaibing
,
Z.
,
Xinbo
,
G.
,
Dacheng
,
T.
, and
Xuelong
,
L.
,
2012
, “
Multi-Scale Dictionary for Single Image Super-Resolution
,”
2012 IEEE Conference on Computer Vision and Pattern Recognition, Computer Vision and Pattern Recognition (CVPR)
, pp.
1114
1121
.
28.
Wang
,
X.
,
Yu
,
K.
,
Dong
,
C.
, and
Change Loy
,
C.
,
2018
, “
Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform
,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Computer Vision and Pattern Recognition (CVPR)
, pp.
606
615
.
29.
An
,
F.-P.
, and
Liu
,
J.-e.
,
2021
, “
Medical Image Segmentation Algorithm Based on Multilayer Boundary Perception-Self Attention Deep Learning Model
,”
Multi. Tools Appl. Int. J.
,
80
(
10
), p.
1
.
30.
Choi
,
J.-S.
, and
Kim
,
M.
,
2017
, “
A Deep Convolutional Neural Network with Selection Units for Super-Resolution
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
, pp.
1150
1156
.
31.
Zhang
,
Y.
,
Li
,
K.
,
Li
,
K.
,
Wang
,
L.
,
Zhong
,
B.
, and
Fu
,
Y.
,
2018
, “
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
.”
Arxiv
.
32.
Iandola
,
F. N.
,
Han
,
S.
,
Moskewicz
,
M. W.
,
Ashraf
,
K.
,
Dally
,
W. J.
, and
Keutzer
,
K.
,
2016
, “
Squeezenet: Alexnet-Level Accuracy With 50x Fewer Parameters and < 0.5 mb Model Size
.”
Arxiv
.
33.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
3431
3440
.
34.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Munich, Germany
,
Springer
, pp.
234
241
.
35.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
770
778
.
36.
Johnson
,
J.
,
Alahi
,
A.
, and
Fei-Fei
,
L.
,
2016
,
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
,
B.
Leibe
,
J.
Matas
,
N.
Sebe
, and
M.
Welling
, eds.,
Lecture Notes in Computer Science
,
Springer
,
Amsterdam, The Netherlands
, p.
694
.
37.
Zhang
,
Z.
,
Wang
,
Z.
,
Lin
,
Z.
, and
Qi
,
H.
,
2019
, “
Image Super-Resolution by Neural Texture Transfer
,”
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
7974
7983
.
38.
Ledig
,
C.
,
Theis
,
L.
,
Huszar
,
F.
,
Caballero
,
J.
,
Cunningham
,
A.
,
Acosta
,
A.
,
Aitken
,
A.
,
Tejani
,
A.
,
Totz
,
J.
,
Wang
,
Z.
, and
Shi
,
W.
,
2016
, “
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
.”
Arxiv
.
39.
Park
,
J.
,
Woo
,
S.
,
Lee
,
J.-Y.
, and
Kweon
,
I. S.
,
2018
, “
BAM: Bottleneck Attention Module
.”
Arxiv
.
40.
Woo
,
S.
,
Park
,
J.
,
Lee
,
J.-Y.
, and
Kweon
,
I. S.
,
2018
,
Cbam: Convolutional Block Attention Module
,
V.
Ferrari
,
M.
Hebert
,
C.
Sminchisescu
, and
Y.
Weiss
, eds., Lecture Notes in Computer Science,
Springer
,
Munich, Germany
, p.
3
.
41.
Chu
,
T.
,
Chen
,
Y.
,
Huang
,
L.
,
Tan
,
H.
,
Cao
,
J.
, and
Xu
,
Z.
,
2020
, “
Street View Image Retrieval with Average Pooling Features
,”
IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Geoscience and Remote Sensing Symposium, IGARSS 2020–2020 IEEE International
, pp.
1205
1208
.
42.
Bachtiar
,
Y.
, and
Adiono
,
T.
,
2019
, “
Convolutional Neural Network and Maxpooling Architecture on Zynq Soc Fpga
,”
2019 International Symposium on Electronics and Smart Devices (ISESD)
, pp.
1
5
.
43.
Janocha
,
K.
, and
Czarnecki
,
W. M.
,
2017
, “
On Loss Functions for Deep Neural Networks in Classification
.”
Arxiv
.
44.
Zhao
,
P.
, and
Lai
,
L.
,
2020
, “
Minimax Optimal Estimation of Kl Divergence for Continuous Distributions
,”
IEEE Trans. Inform. Theory
,
66
(
12
), pp.
7787
7811
.
45.
Zhou
,
H.
,
Xu
,
Q.
, and
Li
,
N.
,
2020
,
A Study on Using Image Based Machine Learning Methods to Develop the Surrogate Models of Stamp Forming Simulations
.
46.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
ADAM: A Method for Stochastic Optimization
.”
arXiv preprint arXiv:1412.6980
.
47.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
.”
Neural Information Processing Systems
.
48.
Yang
,
F.
,
Yang
,
H.
,
Fu
,
J.
,
Lu
,
H.
, and
Guo
,
B.
,
2020
, “
Learning Texture Transformer Network for Image Super-Resolution
,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
5790
5799
.
49.
Kasem
,
H.
,
Hung
,
K.
, and
Jiang
,
J.
,
2019
, “
Spatial Transformer Generative Adversarial Network for Robust Image Super-Resolution
,”
IEEE Access, Access, IEEE
,
7
(
1
), p.
182993
.
You do not currently have access to this content.