Abstract

Guided elastic waves, propagating through curved waveguides, have attracted significant attention in the recent past, both from the perspectives of assessment of structural integrity and generating novel designs of acoustic waveguides. This article presents investigation of the interaction of the fundamental Lamb modes with a cylindrical bend in thin metallic plates. A hybrid numerical method is exposited, which combines the computational efficacy of the semi-analytical finite element method in modeling the long straight portions of the plate and the versatility of the conventional finite element method in modeling the bent portion. The predictive capabilities of the proposed method are validated using transient finite element simulations. Appropriate modifications to the hybrid method, needed for simulating the multimodal incidence resulting from the point-force actuation, are discussed. Using the hybrid method, the scattering and mode-conversion behavior, imparted by the cylindrical bend, is studied when the two fundamental Lamb modes are used as the incident interrogation signals. The extents of equi-modal and cross-modal contributions in both the reflected as well as transmitted waveforms are quantified in terms of the respective modal energy ratios. Explicable contour charts are presented for comprehending the scattering behavior over a wide range of frequencies and bend angles that span from 0 deg to 180 deg. For two representative cases, the modal displacement patterns inside the bend region are presented and discussed. The present investigation can find its potential use in the analysis of geometrically irregular structures leading to the design of novel acoustic waveguides.

References

1.
Chang
,
C.-W.
, and
Hsieh
,
W.-F.
,
2004
, “
Design and Analyses of Compact Bent-Tapered Waveguides Using Guided-Wave Lens Sets
,”
Microwave Opt. Technol. Lett.
,
42
(
4
), pp.
324
328
.
2.
Schermer
,
R. T.
, and
Cole
,
J. H.
,
2007
, “
Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment
,”
IEEE. J. Quantum. Electron.
,
43
(
10
), pp.
899
909
.
3.
Ding
,
J.
,
Fan
,
L.
,
Zhang
,
S.-Y.
,
Zhang
,
H.
, and
Yu
,
W.-W.
,
2018
, “
Simultaneous Realization of Slow and Fast Acoustic Waves Using a Fractal Structure of Koch Curve
,”
Sci. Rep.
,
8
(
1
), pp.
1
7
.
4.
Han
,
J.
, and
Tang
,
S.
,
2018
, “
Realization of Complex Curved Waveguide Based on Local Resonant 3d Metamaterial
,”
AIP Adv.
,
8
(
12
), p.
125327
.
5.
Darabi
,
A.
,
Zareei
,
A.
,
Alam
,
M.-R.
, and
Leamy
,
M. J.
,
2018
, “
Broadband Bending of Flexural Waves: Acoustic Shapes and Patterns
,”
Sci. Rep.
,
8
(
1
), pp.
1
7
.
6.
Hu
,
Y.
,
Zhang
,
Y.
,
Su
,
G.
,
Zhao
,
M.
,
Li
,
B.
,
Liu
,
Y.
, and
Li
,
Z.
,
2022
, “
Realization of Ultrathin Waveguides by Elastic Metagratings
,”
Commun. Phys.
,
5
(
1
), pp.
1
10
.
7.
Brath
,
A. J.
,
Simonetti
,
F.
,
Nagy
,
P. B.
, and
Instanes
,
G.
,
2014
, “
Acoustic Formulation of Elastic Guided Wave Propagation and Scattering in Curved Tubular Structures
,”
IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control
,
61
(
5
), pp.
815
829
.
8.
Cao
,
X.
,
Jia
,
C.
,
Miao
,
H.
,
Kang
,
G.
, and
Zhang
,
C.
,
2021
, “
Excitation and Manipulation of Guided Shear-Horizontal Plane Wave Using Elastic Metasurfaces
,”
Smart Mater. Struct.
,
30
(
5
), p.
055013
.
9.
Hu
,
C.
,
Yang
,
B.
,
Xuan
,
F.-Z.
,
Yan
,
J.
, and
Xiang
,
Y.
,
2020
, “
Damage Orientation and Depth Effect on the Guided Wave Propagation Behavior in 30crmo Steel Curved Plates
,”
Sensors
,
20
(
3
), p.
849
.
10.
Denis
,
V.
, and
Mencik
,
J.-M.
,
2020
, “
A Wave-Based Optimization Approach of Curved Joints for Improved Defect Detection in Waveguide Assemblies
,”
J. Sound. Vib.
,
465
, p.
115003
.
11.
Gridin
,
D.
, and
Craster
,
R. V.
,
2003
, “
Quasi–Mmodes of a Weakly Curved Waveguide
,”
Proc. R. Soc. London. Ser. A: Mathematic. Phys. Eng. Sci.
,
459
(
2039
), pp.
2909
2931
.
12.
Gridin
,
D.
,
Craster
,
R. V.
, and
Adamou
,
A. T.
,
2005
, “
Trapped Modes in Curved Elastic Plates
,”
Proc. R. Soc. A: Mathematic. Phys. Eng. Sci.
,
461
(
2056
), pp.
1181
1197
.
13.
Maurel
,
A.
,
Mercier
,
J.-F.
, and
Félix
,
S.
,
2014
, “
Propagation in Waveguides With Varying Cross Section and Curvature: A New Light on the Role of Supplementary Modes in Multi-modal Methods
,”
Proc. R. Soc. A: Mathematic. Phys. Eng. Sci.
,
470
(
2166
), p.
20140008
.
14.
Chapman
,
C.
, and
Sorokin
,
S.
,
2017
, “
The Deferred Limit Method for Long Waves in a Curved Waveguide
,”
Proc. R. Soc. A: Mathematic. Phys. Eng. Sci.
,
473
(
2200
), p.
20160900
.
15.
Joglekar
,
D. M.
, and
Mitra
,
M.
,
2015
, “
Nonlinear Analysis of Flexural Wave Propagation Through 1d Waveguides With a Breathing Crack
,”
J. Sound. Vib.
,
344
, pp.
242
257
.
16.
Joglekar
,
D. M.
, and
Mitra
,
M.
,
2016
, “
Analysis of Flexural Wave Propagation Through Beams With a Breathing Crack Using Wavelet Spectral Finite Element Method
,”
Mech. Syst. Signal. Process.
,
76
, pp.
576
591
.
17.
Joglekar
,
D. M.
,
2020
, “
Analysis of Nonlinear Frequency Mixing in Timoshenko Beams With a Breathing Crack Using Wavelet Spectral Finite Element Method
,”
J. Sound. Vib.
,
488
, p.
115532
.
18.
Lee
,
J.-H.
, and
Lee
,
S.-J.
,
2009
, “
Application of Laser-Generated Guided Wave for Evaluation of Corrosion in Carbon Steel Pipe
,”
NDT & E Int.
,
42
(
3
), pp.
222
227
.
19.
Kubrusly
,
A. C.
,
Freitas
,
M. A.
,
von der Weid
,
J. P.
, and
Dixon
,
S.
,
2019
, “
Interaction of SH Guided Waves With Wall Thinning
,”
NDT & E Int.
,
101
, pp.
94
103
.
20.
Agrawal
,
Y.
,
Gangwar
,
A. S.
, and
Joglekar
,
D. M.
,
2022
, “
Localization of a Breathing Delamination Using Nonlinear Lamb Wave Mixing
,”
J. Nondestructive Evaluation, Diagnostics Prognostics Eng. Syst.
,
5
(
3
), p.
031005
.
21.
Gangwar
,
A. S.
,
Agrawal
,
Y.
, and
Joglekar
,
D. M.
,
2021
, “
Nonlinear Interactions of Lamb Waves With a Delamination in Composite Laminates
,”
J. Nondestructive Evaluation Diagnostic. Prognostics Eng. Syst.
,
4
(
3
), pp.
1
24
.
22.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Materials Struct.
,
25
(
5
), p.
053001
.
23.
Nazeer
,
N.
,
Ratassepp
,
M.
, and
Fan
,
Z.
,
2017
, “
Damage Detection in Bent Plates Using Shear Horizontal Guided Waves
,”
Ultrasonics
,
75
, pp.
155
163
.
24.
Periyannan
,
S.
,
Rajagopal
,
P.
, and
Balasubramaniam
,
K.
,
2017
, “
Ultrasonic Bent Waveguides Approach for Distributed Temperature Measurement
,”
Ultrasonics
,
74
, pp.
211
220
.
25.
Ramadhas
,
A.
,
Sreedhar
,
P.
,
Pattanayak
,
R. K.
,
Balasubramaniam
,
K.
, and
Rajagopal
,
P.
,
2012
, “
Ultrasonic Waves Guided by Transverse Bends in Plates Subjected to Symmetric Axial Excitation
,”
The 39th Annual Review of Progress in Quantitative Nondestructive Evaluation
,
Denver, CO
,
July 15–20
, American Institute of Physics, pp.
167
174
.
26.
Ramdhas
,
A.
,
Pattanayak
,
R. K.
,
Balasubramaniam
,
K.
, and
Rajagopal
,
P.
,
2013
, “
Antisymmetric Feature-Guided Ultrasonic Waves in Thin Plates With Small Radius Transverse Bends From Low-Frequency Symmetric Axial Excitation
,”
J. Acoustical Soc. America
,
134
(
3
), pp.
1886
1898
.
27.
Ramdhas
,
A.
,
Pattanayak
,
R. K.
,
Balasubramaniam
,
K.
, and
Rajagopal
,
P.
,
2015
, “
Symmetric Low-Frequency Feature-Guided Ultrasonic Waves in Thin Plates With Transverse Bends
,”
Ultrasonics
,
56
, pp.
232
242
.
28.
Yu
,
X.
,
Ratassepp
,
M.
,
Rajagopal
,
P.
, and
Fan
,
Z.
,
2016
, “
Anisotropic Effects on Ultrasonic Guided Waves Propagation in Composite Bends
,”
Ultrasonics
,
72
, pp.
95
105
.
29.
Yu
,
X.
,
Ratassepp
,
M.
, and
Fan
,
Z.
,
2017
, “
Damage Detection in Quasi-isotropic Composite Bends Using Ultrasonic Feature Guided Waves
,”
Compos. Sci. Technol.
,
141
, pp.
120
129
.
30.
Munian
,
R. K.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
,
2020
, “
Ultrasonic Guided Wave Scattering Due to Delamination in Curved Composite Structures
,”
Composite Struct.
,
239
, p.
111987
.
31.
Mencik
,
J.-M.
,
2010
, “
On the Low-and Mid-frequency Forced Response of Elastic Structures Using Wave Finite Elements With One-Dimensional Propagation
,”
Comput. Struct.
,
88
(
11–12
), pp.
674
689
.
32.
Zhou
,
W.
, and
Ichchou
,
M.
,
2010
, “
Wave Propagation in Mechanical Waveguide With Curved Members Using Wave Finite Element Solution
,”
Comput. Methods. Appl. Mech. Eng.
,
199
(
33–36
), pp.
2099
2109
.
33.
Krome
,
F.
, and
Gravenkamp
,
H.
,
2017
, “
A Semi-Analytical Curved Element for Linear Elasticity Based on the Scaled Boundary Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
109
(
6
), pp.
790
808
.
34.
Qi
,
M.
,
Zhou
,
S.
,
Ni
,
J.
, and
Li
,
Y.
,
2016
, “
Investigation on Ultrasonic Guided Waves Propagation in Elbow Pipe
,”
Int. J. Pressure Vessels Piping
,
139
, pp.
250
255
.
35.
Rose
,
J. L.
,
2018
, “
Aspects of a Hybrid Analytical Finite Element Method Approach for Ultrasonic Guided Wave Inspection Design
,”
J. Nondestructive Evaluation Diagnostics Prognostics Eng. Syst.
,
1
(
1
), p.
011001
.
36.
Brath
,
A. J.
,
Simonetti
,
F.
,
Nagy
,
P. B.
, and
Instanes
,
G.
,
2017
, “
Experimental Validation of a Fast Forward Model for Guided Wave Tomography of Pipe Elbows
,”
IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control
,
64
(
5
), pp.
859
871
.
37.
Hayashi
,
T.
,
Kawashima
,
K.
,
Sun
,
Z.
, and
Rose
,
J. L.
,
2005
, “
Guided Wave Propagation Mechanics Across a Pipe Elbow
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
322
327
.
38.
Morsbøl
,
J.
, and
Sorokin
,
S. V.
,
2015
, “
Elastic Wave Propagation in Curved Flexible Pipes
,”
Int. J. Solids. Struct.
,
75
, pp.
143
155
.
39.
Bartoli
,
I.
,
Marzani
,
A.
,
Di Scalea
,
F. L.
, and
Viola
,
E.
,
2006
, “
Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-Section
,”
J. Sound. Vib.
,
295
(
3–5
), pp.
685
707
.
40.
Karunasena
,
W.
,
Liew
,
K.
, and
Kitipornchai
,
S.
,
1995
, “
Reflection of Plate Waves at the Fixed Edge of a Composite Plate
,”
J. Acoustical Soc. America
,
98
(
1
), pp.
644
651
.
41.
Ahmad
,
Z.
, and
Gabbert
,
U.
,
2012
, “
Simulation of Lamb Wave Reflections at Plate Edges Using the Semi-analytical Finite Element Method
,”
Ultrasonics
,
52
(
7
), pp.
815
820
.
42.
Long
,
C. S.
, and
Loveday
,
P. W.
,
2014
, “
Validation of Hybrid SAFE-FE Guided Wave Scattering Predictions in Rail
,”
41st Annual Review of Progress in Quantitative Nondestructive Evaluation
,
Boise, ID
,
July 20–25
, Vol. 1650, American Institute of Physics, pp.
703
712
.
43.
Spada
,
A.
,
Capriotti
,
M.
, and
di Scalea
,
F. L.
,
2020
, “
Global-Local Model for Guided Wave Scattering Problems With Application to Defect Characterization in Built-Up Composite Structures
,”
Int. J. Solids. Struct.
,
182
, pp.
267
280
.
44.
Gregory
,
R. D.
, and
Gladwell
,
I.
,
1983
, “
The Reflection of a Symmetric Rayleigh-Lamb Wave at the Fixed or Free Edge of a Plate
,”
J. Elasticity
,
13
(
2
), pp.
185
206
.
45.
Karunasena
,
W.
,
Liew
,
K.
, and
Kitipornchai
,
S.
,
1995
, “
Hybrid Analysis of Lamb Wave Reflection by a Crack at the Fixed Edge of a Composite Plate
,”
Comput. Methods. Appl. Mech. Eng.
,
125
(
1–4
), pp.
221
233
.
46.
Galán
,
J. M.
, and
Abascal
,
R.
,
2002
, “
Numerical Simulation of Lamb Wave Scattering in Semi-infinite Plates
,”
Int. J. Numerical Methods Eng.
,
53
(
5
), pp.
1145
1173
.
47.
Bijudas
,
C.
,
Mitra
,
M.
, and
Mujumdar
,
P.
,
2013
, “
Coupling Effect of Piezoelectric Wafer Transducers in Distortions of Primary Lamb Wave Modes
,”
Smart Mater. Struct.
,
22
(
6
), p.
065007
.
48.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM. J. Res. Dev.
,
11
(
2
), pp.
215
234
.
49.
Giurgiutiu
,
V.
,
2008
,
Structural Health Monitoring With Piezoelectric Wafer Active Sensors
, 2nd ed.,
Academic Press/Elsevier
,
Singapore
.
You do not currently have access to this content.