Abstract

Conventionally, neural network constitutive laws for path-dependent elastoplastic solids are trained via supervised learning performed on recurrent neural networks, with the time history of strain as input and the stress as output. However, training neural networks to replicate path-dependent constitutive responses requires significantly more data due to the path dependence. This demand on diversity and abundance of accurate data, as well as the lack of interpretability to guide the data generation process, could become major roadblocks for engineering applications. In this study, we attempt to simplify these training processes and improve the interpretability of the trained models by breaking down the training of material models into multiple supervised machine learning programs for elasticity, initial yielding, and hardening laws that can be conducted sequentially. To predict pressure sensitivity and rate dependence of the plastic responses, we reformulate the Hamliton–Jacobi equation such that the yield function is parametrized in a product space spanned by the principal stress, the accumulated plastic strain, and time. To test the versatility of the neural network meta-modeling framework, we conduct multiple numerical experiments where neural networks are trained and validated against (1) data generated from known benchmark models, (2) data obtained from physical experiments, and (3) data inferred from homogenizing sub-scale direct numerical simulations of microstructures. The neural network model is also incorporated into an offline FFT-FEM model to improve the efficiency of the multiscale calculations.

References

1.
Cheng
,
Z.
,
Zhou
,
H.
,
Lu
,
Q.
,
Gao
,
H.
, and
Lu
,
L.
,
2018
, “
Extra Strengthening and Work Hardening in Gradient Nanotwinned Metals
,”
Science
,
362
(
6414
), p.
eaau1925
.
2.
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1995
, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
5
), p.
689
.
3.
Aydin
,
A.
,
Borja
,
R. I.
, and
Eichhubl
,
P.
,
2006
, “
Geological and Mathematical Framework for Failure Modes in Granular Rock
,”
J. Struct. Geol.
,
28
(
1
), pp.
83
98
.
4.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
5.
Martin
,
C.
,
Bouvard
,
D.
, and
Shima
,
S.
,
2003
, “
Study of Particle Rearrangement During Powder Compaction by the Discrete Element Method
,”
J. Mech. Phys. Solids.
,
51
(
4
), pp.
667
693
.
6.
Coulomb
,
C. A.
,
1776
,
Essai Sur Une Application Des Regles De Maximis Et Minimis Quelques Problemes De Statique, Relatifs Lárchitecture
, Memoires de Mathematique de l'Academie Royale de Science 7, Paris.
7.
Mises
,
R. v.
,
1913
, “
Mechanik Der Festen Körper Im Plastisch-deformablen Zustand
,”
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
,
1913
, pp.
582
592
.
8.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
.
9.
Sun
,
X.
,
Bahmani
,
B.
,
Vlassis
,
N. N.
,
Sun
,
W.
, and
Xu
,
Y.
,
2021
, “
Data-Driven Discovery of Interpretable Causal Relations for Deep Learning Material Laws With Uncertainty Propagation
,”
Granular Matter.
10.
Ehlers
,
W.
, and
Scholz
,
B.
,
2007
, “
An Inverse Algorithm for the Identification and the Sensitivity Analysis of the Parameters Governing Micropolar Elasto-Plastic Granular Material
,”
Arch. Appl. Mech.
,
77
(
12
), pp.
911
931
.
11.
Wang
,
K.
,
Sun
,
W.
,
Salager
,
S.
,
Na
,
S.
, and
Khaddour
,
G.
,
2016
, “
Identifying Material Parameters for a Micro-Polar Plasticity Model Via X-Ray Micro-Computed Tomographic (CT) Images: Lessons Learned From the Curve-Fitting Exercises
,”
Int. J. Multiscale Comput. Eng.
,
14
(
4
), pp. 389–413.
12.
Jang
,
J.
, and
Smyth
,
A. W.
,
2017
, “
Model Updating of a Full-Scale Fe Model With Nonlinear Constraint Equations and Sensitivity-Based Cluster Analysis for Updating Parameters
,”
Mech. Syst. Signal. Process.
,
83
, pp.
337
355
.
13.
Ghaboussi
,
J.
,
Pecknold
,
D. A.
,
Zhang
,
M.
, and
Haj-Ali
,
R. M.
,
1998
, “
Autoprogressive Training of Neural Network Constitutive Models
,”
Int. J. Numer. Methods Eng.
,
42
(
1
), pp.
105
126
.
14.
Ghaboussi
,
J.
,
Garrett Jr
,
J.
, and
Wu
,
X.
,
1991
, “
Knowledge-Based Modeling of Material Behavior With Neural Networks
,”
J. Eng. Mech.
,
117
(
1
), pp.
132
153
.
15.
Lefik
,
M.
, and
Schrefler
,
B. A.
,
2003
, “
Artificial Neural Network as an Incremental Non-linear Constitutive Model for a Finite Element Code
,”
Comput. Methods. Appl. Mech. Eng.
,
192
(
28–30
), pp.
3265
3283
.
16.
Mozaffar
,
M.
,
Bostanabad
,
R.
,
Chen
,
W.
,
Ehmann
,
K.
,
Cao
,
J.
, and
Bessa
,
M.
,
2019
, “
Deep Learning Predicts Path-Dependent Plasticity
,”
Proc. Natl. Acad. Sci. USA
,
116
(
52
), pp.
26414
26420
.
17.
Wang
,
K.
, and
Sun
,
W.
,
2018
, “
A Multiscale Multi-Permeability Poroplasticity Model Linked by Recursive Homogenizations and Deep Learning
,”
Comput. Methods. Appl. Mech. Eng.
,
334
, pp.
337
380
.
18.
Chi
,
H.
,
Zhang
,
Y.
,
Tang
,
T. L. E.
,
Mirabella
,
L.
,
Dalloro
,
L.
,
Song
,
L.
, and
Paulino
,
G. H.
,
2021
, “
Universal Machine Learning for Topology Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
375
, p.
112739
.
19.
Baker
,
N.
,
Alexander
,
F.
,
Bremer
,
T.
,
Hagberg
,
A.
,
Kevrekidis
,
Y.
,
Najm
,
H.
,
Parashar
,
M.
,
Patra
,
A.
,
Sethian
,
J.
,
Wild
,
S.
, and
Willcox
,
K.
,
2019
, “
Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence
,
Technical Report
,
USDOE Office of Science (SC)
Washington, DC
.
20.
Murdoch
,
W. J.
,
Singh
,
C.
,
Kumbier
,
K.
,
Abbasi-Asl
,
R.
, and
Yu
,
B.
,
2019
, “
Definitions, Methods, and Applications in Interpretable Machine Learning
,”
Proc. Natl. Acad. Sci. USA
,
116
(
44
), pp.
22071
22080
.
21.
Liu
,
Y.
,
Sun
,
W.
,
Yuan
,
Z.
, and
Fish
,
J.
,
2016
, “
A Nonlocal Multiscale Discrete-Continuum Model for Predicting Mechanical Behavior of Granular Materials
,”
Int. J. Numer. Methods Eng.
,
106
(
2
), pp.
129
160
.
22.
Wang
,
K.
, and
Sun
,
W.
,
2016
, “
A Semi-Implicit Discrete-Continuum Coupling Method for Porous Media Based on the Effective Stress Principle at Finite Strain
,”
Comput. Methods. Appl. Mech. Eng.
,
304
, pp.
546
583
.
23.
Feyel
,
F.
, and
Chaboche
,
J.-L.
,
2000
, “
Fe2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fibre Sic/ti Composite Materials
,”
Comput. Methods. Appl. Mech. Eng.
,
183
(
3–4
), pp.
309
330
.
24.
Hartmaier
,
A.
,
Buehler
,
M. J.
, and
Gao
,
H.
,
2005
, “
Multiscale Modeling of Deformation in Polycrystalline Thin Metal Films on Substrates
,”
Adv. Eng. Mater.
,
7
(
3
), pp.
165
169
.
25.
Vlassis
,
N. N.
, and
Sun
,
W.
,
2021
, “
Sobolev Training of Thermodynamic-Informed Neural Networks for Interpretable Elasto-Plasticity Models With Level Set Hardening
,”
Comput. Methods. Appl. Mech. Eng.
,
377
, p.
113695
.
26.
Molnar
,
C.
,
Casalicchio
,
G.
, and
Bischl
,
B.
,
2018
, “
iml: An R Package for Interpretable Machine Learning
,”
J. Open Source Softw.
,
3
(
26
), p.
786
.
27.
Coombs
,
W. M.
, and
Motlagh
,
Y. G.
,
2017
, “
Nurbs Plasticity: Yield Surface Evolution and Implicit Stress Integration for Isotropic Hardening
,”
Comput. Methods. Appl. Mech. Eng.
,
324
, pp.
204
220
.
28.
Borja
,
R. I.
,
2013
,
Plasticity: Modeling & Computation
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
29.
Bishop
,
C. M.
,
1995
,
Neural Networks for Pattern Recognition
,
Oxford University Press
,
Oxford, UK
.
30.
Czarnecki
,
W. M.
,
Osindero
,
S.
,
Jaderberg
,
M.
,
Świrszcz
,
G.
, and
Pascanu
,
R.
,
2017
, “
Sobolev Training for Neural Networks
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17)
, Curran Associates Inc., Red Hook, NY, pp.
4281
4290
.
31.
Roscoe
,
K.
, and
Burland
,
J.
,
1970
, “
On The Generalized Stress-Strain Behavior of “Wet” Clay: 60. K. H. Roscoe and J. B. Burland. Engineering Plasticity (Papers for a Conference Held in Cambridge, Mar. 1968), Cambridge, University Press, 535–609 (1968)
,”
J. Terramechanics
,
7
(
2
), pp.
107
108
.
32.
Argyris
,
J.
,
Faust
,
G.
,
Szimmat
,
J.
,
Warnke
,
E.
, and
Willam
,
K.
,
1974
, “
Recent Developments in the Finite Element Analysis of Prestressed Concrete Reactor Vessels
,”
Nucl. Eng. Des.
,
28
(
1
), pp.
42
75
.
33.
Cowper
,
G. R.
, and
Symonds
,
P. S.
,
1957
, “
Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams
,
Brown Univ Providence Ri
, Technical Report, Office of Naval Research.
34.
Dozat
,
T.
,
2016
, “
Incorporating Nesterov Momentum Into Adam
,” http://cs229.stanford.edu/proj2015/054_report.pdf
35.
Kochmann
,
J.
,
Wulfinghoff
,
S.
,
Reese
,
S.
,
Mianroodi
,
J. R.
, and
Svendsen
,
B.
,
2016
, “
Two-Scale FE-FFT-and Phase-Field-Based Computational Modeling of Bulk Microstructural Evolution and Macroscopic Material Behavior
,”
Comput. Methods. Appl. Mech. Eng.
,
305
, pp.
89
110
.
36.
Fuchs
,
A.
,
Heider
,
Y.
,
Wang
,
K.
,
Sun
,
W.
, and
Kaliske
,
M.
,
2021
, “
Dnn2: A Hyper-Parameter Reinforcement Learning Game for Self-Design of Neural Network Based Elasto-Plastic Constitutive Descriptions
,”
Comput. Struct.
,
249
, p.
106505
.
37.
Pascanu
,
R.
,
Mikolov
,
T.
, and
Bengio
,
Y.
,
2013
, “
On the Difficulty of Training Recurrent Neural Networks
,”
International Conference on Machine Learning
,
Atlanta, GA
,
June 17–19
,
PMLR
, pp.
1310
1318
.
38.
Xu
,
K.
,
Huang
,
D. Z.
, and
Darve
,
E.
,
2021
, “
Learning Constitutive Relations Using Symmetric Positive Definite Neural Networks
,”
J. Comput. Phys.
,
428
, p.
110072
.
39.
Giunta
,
A.
,
Wojtkiewicz
,
S.
, and
Eldred
,
M.
,
2003
, “
Overview of Modern Design of Experiments Methods for Computational Simulations
,”
41st Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, p.
649
.
40.
Hashash
,
Y.
,
Jung
,
S.
, and
Ghaboussi
,
J.
,
2004
, “
Numerical Implementation of a Neural Network Based Material Model in Finite Element Analysis
,”
Int. J. Numer. Methods Eng.
,
59
(
7
), pp.
989
1005
.
41.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R.
,
2011
,
Computational Methods for Plasticity: Theory and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
42.
Abbo
,
A.
, and
Sloan
,
S.
,
1995
, “
A Smooth Hyperbolic Approximation to the Mohr-Coulomb Yield Criterion
,”
Comput. Struct.
,
54
(
3
), pp.
427
441
.
43.
Matsuoka
,
H.
, and
Nakai
,
T.
,
1974
, “
Stress-Deformation and Strength Characteristics of Soil Under Three Different Principal Stresses
,”
Proceedings of the Japan Society of Civil Engineers
, no.
232
,
Japan Society of Civil Engineers
, pp.
59
70
.
44.
Vlassis
,
N. N.
,
Ma
,
R.
, and
Sun
,
W.
,
2020
, “
Geometric Deep Learning for Computational Mechanics Part I: Anisotropic Hyperelasticity
,”
Comput. Methods. Appl. Mech. Eng.
,
371
, p.
113299
.
45.
Scarselli
,
F.
, and
Tsoi
,
A. C.
,
1998
, “
Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results
,”
Neural Netw.
,
11
(
1
), pp.
15
37
.
46.
Parhi
,
R.
, and
Nowak
,
R. D.
,
2021
, “
Banach Space Representer Theorems for Neural Networks and Ridge Splines
,”
J. Mach. Lear. Res.
,
22
(
43
), pp.
1
40
.
47.
Weinan
,
E.
, and
Wojtowytsch
,
S.
,
2020
, “
On the Banach Spaces Associated With Multi-Layer ReLU Networks: Function Representation, Approximation Theory and Gradient Descent Dynamics
,”
arXiv Preprint
.
48.
Wang
,
K.
,
Sun
,
W.
, and
Du
,
Q.
,
2019
, “
A Cooperative Game for Automated Learning of Elasto-plasticity Knowledge Graphs and Models With AI-Guided Experimentation
,”
Comput. Mech.
,
64
(
2
), pp.
467
499
.
49.
Zaremba
,
W.
,
Sutskever
,
I.
, and
Vinyals
,
O.
,
2014
, “
Recurrent Neural Network Regularization
,”
arXiv Preprint
.
You do not currently have access to this content.