Abstract

Macro-scale ductility is not an intrinsic material property but is dependent on the overall geometry of the specimen. To account for variety in specimen geometries, multiple ductility scaling laws have been developed, which scale ductility between different specimen sizes. Traditionally, these ductility laws rely on testing multiple different specimens of varying sizes to obtain material parameters, often done by varying gauge lengths. With the use of digital image correlation (DIC), this study presents a technique where multiple different gauge lengths are extracted from a single specimen to obtain ductility scaling parameters from a single experiment. This technique provides orders of magnitude more data from each specimen than previous techniques. This variable extensometer method is then validated by testing multiple different geometries, and select scaling laws are then compared.

References

1.
Lister
,
D. H.
,
2012
, “Understanding and Mitigating Corrosion in Nuclear Reactor Systems,”
Nuclear Corrosion Science and Engineering
,
D.
Féron
, ed.,
Elsevier
,
New York
, pp.
57
74
.
2.
Corwin
,
W. R.
, and
Lucas
,
G. E.
,
1986
,
The Use of Small-Scale Specimens for Testing Irradiated Material : A Symposium Sponsored by ASTM Committee E-10 on Nuclear Technology and Applications, Albuquerque, N.M., 23 Sept. 1983
,
ASTM
,
Philadelphia, PA
.
3.
Kryukov
,
A.
,
Debarberis
,
L.
,
von Estorff
,
U.
,
Gillemot
,
F.
, and
Oszvald
,
F.
,
2012
, “
Irradiation Embrittlement of Reactor Pressure Vessel Steel at Very High Neutron Fluence
,”
J. Nucl. Mater.
,
422
(
1
), pp.
173
177
.
4.
Gussev
,
M. N.
,
Howard
,
R. H.
,
Terrani
,
K. A.
, and
Field
,
K. G.
,
2017
, “
Sub-Size Tensile Specimen Design for in-Reactor Irradiation and Post-Irradiation Testing
,”
Nucl. Eng. Des.
,
320
(
1
), pp.
298
308
.
5.
Kasada
,
R.
,
Takayama
,
Y.
,
Yabuuchi
,
K.
, and
Kimura
,
A.
,
2011
, “
A New Approach to Evaluate Irradiation Hardening of Ion-Irradiated Ferritic Alloys by Nano-Indentation Techniques
,”
Fusion Eng. Des.
,
86
(
9–11
), pp.
2658
2661
.
6.
Uchic
,
M. D.
,
Dimiduk
,
D. M.
,
Florando
,
J. N.
, and
Nix
,
W. D.
,
2004
, “
Sample Dimensions Influence Strength and Crystal Plasticity
,”
Science
,
305
(
5686
), pp.
986
989
.
7.
Ozdemir
,
N.
,
Karaman
,
I.
,
Mara
,
N. A.
,
Chumlyakov
,
Y. I.
, and
Karaca
,
H. E.
,
2012
, “
Size Effects in the Superelastic Response of Ni54Fe19Ga27 Shape Memory Alloy Pillars With a Two Stage Martensitic Transformation
,”
Acta Mater.
,
60
(
16
), pp.
5670
5685
.
8.
Espinosa
,
H. D.
,
Zhu
,
Y.
, and
Moldovan
,
N.
,
2007
, “
Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization
,”
J. Microelectromech. Syst.
,
16
(
5
), pp.
1219
1231
.
9.
Kang
,
W.
, and
Saif
,
M. T. A.
,
2010
, “
A Novel Method for In Situ Uniaxial Tests at the Micro/Nano Scale—Part I: Theory
,”
J. Microelectromech. Syst.
,
19
(
6
), pp.
1309
1321
.
10.
Kang
,
W.
,
Han
,
J. H.
, and
Saif
,
M. T. A.
,
2010
, “
A Novel Method for In Situ Uniaxial Tests at the Micro/Nanoscale—Part II: Experiment
,”
J. Microelectromech. Syst.
,
19
(
6
), pp.
1322
1330
.
11.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
6
, pp.
1564
1583
.
12.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
13.
Ohmori
,
M.
, and
Wakasa
,
K.
,
1973
, “
Tensile Ductility of Copper and Alpha-Brass Single Crystals at Elevated Temperatures
,”
J. Jpn. Inst. Met.
,
37
(
11
), pp.
1195
1199
.
14.
Zhao
,
Y. H.
,
Guo
,
Y. Z.
,
Wei
,
Q.
,
Dangelewicz
,
A. M.
,
Xu
,
C.
,
Zhu
,
Y. T.
,
Langdon
,
T. G.
,
Zhou
,
Y. Z.
, and
Lavernia
,
E. J.
,
2008
, “
Influence of Specimen Dimensions on the Tensile Behavior of Ultrafine-Grained Cu
,”
Scr. Mater.
,
59
(
6
), pp.
627
630
.
15.
Sun
,
J.
,
Jin
,
L.
,
Dong
,
J.
,
Wang
,
F.
,
Dong
,
S.
,
Ding
,
W.
, and
Luo
,
A. A.
,
2019
, “
Towards High Ductility in Magnesium Alloys—The Role of Intergranular Deformation
,”
Int. J. Plast.
,
123
(
1
), pp.
121
132
.
16.
Kassner
,
M. E.
,
Nguyen
,
N. Q.
,
Henshall
,
G. A.
, and
McQueen
,
H. J.
,
1991
, “
The Effects of Temperature and Strain Rate on Extended Ductility of Aluminum
,”
Mater. Sci. Eng. A
,
132
(
1
), pp.
97
105
.
17.
Laporte
,
V.
, and
Mortensen
,
A.
,
2009
, “
Intermediate Temperature Embrittlement of Copper Alloys
,”
Int. Mater. Rev.
,
54
(
2
), pp.
94
116
.
18.
Courtney
,
T. H.
,
2020
, “Mechanical Behavior of Materials,” 9781577664253: Amazon.Com: Books, https://www.amazon.com/Mechanical-Behavior-Materials-Thomas-Courtney/dp/1577664256, Accessed August 26, 2020.
19.
Porollo
,
S. I.
,
Dvoryashin
,
A. M.
,
Ivanov
,
A. A.
,
Konobeev
,
Y. V.
, and
Shulepin
,
S. V.
,
2019
, “
Study of Phase-Structural Transformations Resulting in Low-Temperature Radiation Embrittlement in Ferritic-Martensitic Steel
,”
At. Energy
,
126
(
1
), pp.
39
45
.
20.
Takeda
,
Y.
,
Kiattisaksri
,
C.
,
Aramaki
,
M.
,
Munetoh
,
S.
, and
Furukimi
,
O.
,
2017
, “
Effects of Specimen Thickness in Tensile Tests on Elongation and Deformation Energy for Industrially Pure Iron
,”
ISIJ Int.
,
57
(
6
), pp.
1129
1137
.
21.
Sergueeva
,
A. V.
,
Zhou
,
J.
,
Meacham
,
B. E.
, and
Branagan
,
D. J.
,
2009
, “
Gage Length and Sample Size Effect on Measured Properties During Tensile Testing
,”
Mater. Sci. Eng. A
,
526
(
1
), pp.
79
83
.
22.
Sun
,
X.
,
Soulami
,
A.
,
Choi
,
K. S.
,
Guzman
,
O.
, and
Chen
,
W.
,
2012
, “
Effects of Sample Geometry and Loading Rate on Tensile Ductility of TRIP800 Steel
,”
Mater. Sci. Eng. A
,
541
(
1
), pp.
1
7
.
23.
Yuan
,
W. J.
,
Zhang
,
Z. L.
,
Su
,
Y. J.
,
Qiao
,
L. J.
, and
Chu
,
W. Y.
,
2012
, “
Influence of Specimen Thickness With Rectangular Cross-Section on the Tensile Properties of Structural Steels
,”
Mater. Sci. Eng. A
,
532
(
1
), pp.
601
605
.
24.
Hogström
,
P.
,
Ringsberg
,
J. W.
, and
Johnson
,
E.
,
2009
, “
An Experimental and Numerical Study of the Effects of Length Scale and Strain State on the Necking and Fracture Behaviours in Sheet Metals
,”
Int. J. Impact Eng.
,
36
(
10
), pp.
1194
1203
.
25.
Dieter
,
G.
,
1986
,
Mechanical Metallurgy
,
McGraw-Hill Education
,
New York
.
26.
Oliver
,
D. A.
,
1928
, “
Proposed New Criteria of Ductility From a New Law Connecting the Percentage Elongation With Size of Test-Piece
,”
Proc. Inst. Mech. Eng.
,
115
(
1
), pp.
827
864
.
27.
14:00-17:00
,
2020,
ISO 2566-1:1984
,” ISO, https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/00/75/7524.html, Accessed September 14, 2020.
28.
Xu
,
X.
,
Zhao
,
X.
,
Ai
,
Y.
,
Liang
,
M.
,
Li
,
N.
,
Lin
,
W.
, and
Qin
,
C.
,
2020
, “
Study and Analysis on the Tensile Test Elongation Variation Law for High-Strength Pipeline Steel
,”
J. Mater. Eng. Perform.
,
29
(
4
), pp.
2164
2171
.
29.
Dhalla
,
A. K.
, and
Winter
,
G.
,
1971
, “
Ductility Criteria and Performance of Low Ductility Steels for Cold-Formed Members
,”
1st International Specialty Conference on Cold-Formed Steel Structures
,
Aug. 20
.
30.
Goltsev
,
V. Y.
,
Degadnikova
,
L. A.
, and
Osintsev
,
A. V.
,
2017
, “
The Mechanical Testing of Materials Using the Method of Digital Image Correlation
,”
15th International School-Conference “New Materials -- Materials of Innovative Energy (MIE)
,”
Moscow, Russia
,
Oct. 23–27
.
31.
Thai
,
T. Q.
,
Ruesch
,
J.
,
Gradl
,
P. R.
,
Truscott
,
T. T.
, and
Berke
,
R. B.
,
2021
, “
Speckle Pattern Inversion in High Temperature DIC Measurement
,”
Experimental Techniques
.
32.
Hild
,
F.
, and
Roux
,
S.
,
2006
, “
Digital Image Correlation: From Displacement Measurement to Identification of Elastic Properties—A Review
,”
Strain
,
42
(
2
), pp.
69
80
.
33.
Hansen
,
R. S.
,
Waldram
,
D. W.
,
Thai
,
T. Q.
, and
Berke
,
R. B.
,
2021
, “
Super Resolution Digital Image Correlation (SR-DIC): An Alternative to Image Stitching at High Magnifications
,”
Experimental Mechanics
,
61
(
1
), pp.
1351
1368
.
34.
Michael A
,
M. A.
,
Orteu
,
J.-J.
, and
Schreier
,
H. W.
,
2009
, “Digital Image Correlation (DIC),”
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
H.
Schreier
,
J.-J.
Orteu
, and
M. A.
Sutton
, eds.,
Springer US
,
Boston, MA
, pp.
1
37
.
35.
Salzbrenner
,
B. C.
,
Rodelas
,
J. M.
,
Madison
,
J. D.
,
Jared
,
B. H.
,
Swiler
,
L. P.
,
Shen
,
Y.-L.
, and
Boyce
,
B. L.
,
2017
, “
High-Throughput Stochastic Tensile Performance of Additively Manufactured Stainless Steel
,”
J. Mater. Process. Technol.
,
241
(
1
), pp.
1
12
.
36.
Hansen
,
R. S.
,
Bird
,
T. J.
,
Voie
,
R.
,
Burn
,
K. Z.
, and
Berke
,
R. B.
,
2019
, “
A High Magnification UV Lens for High Temperature Optical Strain Measurements
,”
Rev. Sci. Instrum.
,
90
(
4
), p.
045117
.
37.
Thai
,
T. Q.
,
Smith
,
A. J.
,
Rowley
,
R. J.
,
Gradl
,
P. R.
, and
Berke
,
R. B.
,
2020
, “
Change of Exposure Time Mid-Test in High Temperature DIC Measurement
,”
Meas. Sci. Technol.
,
31
(
7
), p.
075402
.
38.
Brlić
,
T.
,
Rešković
,
S.
,
Vodopivec
,
F.
, and
Jandrlić
,
I.
,
2018
, “
Lüders Bands at the Beginning of the Plastic Flow of Materials
,”
Metalurgija
,
57
(
4
), pp.
357
359
.
39.
Smith
,
A.
,
2021
, “
Development of a Variable Extensometer Method for Measuring Ductility Scaling Parameters
,”
All Graduate Theses and Dissertations
,
Utah State University
,
Logan, UT
.
You do not currently have access to this content.