Abstract

An automatic complex topology lightweight structure generation method (ACTLSGM) is presented to automatically generate 3D models of lightweight truss structures with a boundary surface of any shape. The core idea of the ACTLSGM is to use the PIMesh, a mesh generation algorithm developed by the authors, to generate node distributions inside the object representing the boundary surface of the target complex topology structures; raw lightweight truss structures are then generated based on the node distributions; the resulting lightweight truss structure is then created by adjusting the radius of the raw truss structures using an optimization algorithm based on finite element truss analysis. The finite element analysis-based optimization algorithm can ensure that the resulting structures satisfy the design requirements on stress distributions or stiffness. Three demos, including a lightweight structure for a cantilever beam, a femur bone scaffold, and a 3D shoe sole model with adaptive stiffness, can be used to adjust foot pressure distributions for patients with diabetic foot problems and are generated to demonstrate the performance of the ACTLSGM. The ACTLSGM is not limited to generating 3D models of medical devices, but can be applied in many other fields, including 3D printing infills and other fields where customized lightweight structures are required.

References

1.
International Diabetes Federation
,
2021
, IDF Diabetes Atlas, 10th edn. Brussels, Belgium. [Internet]. [cited 2021 Dec 16]. https://www.diabetesatlas.org
2.
Bus
,
S. A.
,
van Deursen
,
R. W.
,
Armstrong
,
D. G.
,
Lewis
,
J. E. A.
,
Caravaggi
,
C. F.
, and
Cavanagh
,
P. R.
,
2016
, “
Footwear and Offloading Interventions to Prevent and Heal Foot Ulcers and Reduce Plantar Pressure in Patients With Diabetes: A Systematic Review
,”
Diabetes/Metab. Res. Rev.
,
32
(
S1
), pp.
99
118
.
3.
Pan
,
C.
,
Han
,
Y.
, and
Lu
,
J.
,
2020
, “
Design and Optimization of Lattice Structures: A Review
,”
Appl. Sci.
,
10
(
18
), p.
6374
.
4.
Lv
,
Y.
,
Wang
,
B.
,
Liu
,
G.
,
Tang
,
Y.
,
Lu
,
E.
,
Xie
,
K.
,
Lan
,
C.
,
Liu
,
J.
,
Qin
,
Z.
, and
Wang
,
L.
,
2021
, “
Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review
,”
Front. Bioeng. Biotechnol.
,
9
, p.
194
.
5.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
6.
Wu
,
J.
,
Clausen
,
A.
, and
Sigmund
,
O.
,
2017
, “
Minimum Compliance Topology Optimization of Shell–Infill Composites for Additive Manufacturing
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
358
375
.
7.
Wu
,
J.
,
2018
, “
Continuous Optimization of Adaptive Quadtree Structures
,”
Comput. Aided Des.
,
102
, pp.
72
82
.
8.
Zhu
,
J.-H.
,
Zhang
,
W.-H.
, and
Xia
,
L.
,
2016
, “
Topology Optimization in Aircraft and Aerospace Structures Design
,”
Arch. Comput. Methods Eng.
,
23
(
4
), pp.
595
622
.
9.
Zhang
,
L.
,
Song
,
B.
,
Fu
,
J. J.
,
Wei
,
S. S.
,
Yang
,
L.
,
Yan
,
C. Z.
,
Li
,
H.
,
Gao
,
L.
, and
Shi
,
Y. S.
,
2020
, “
Topology-Optimized Lattice Structures With Simultaneously High Stiffness and Light Weight Fabricated by Selective Laser Melting: Design, Manufacturing and Characterization
,”
J. Manuf. Process.
,
56
, pp.
1166
1177
.
10.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin/Heidelberg
, p.
392
.
11.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
12.
Cai
,
S.
, and
Xi
,
J.
,
2008
, “
A Control Approach for Pore Size Distribution in the Bone Scaffold Based on the Hexahedral Mesh Refinement
,”
Comput. Aided Des.
,
40
(
10
), pp.
1040
1050
.
13.
Yoo
,
D. J.
,
2011
, “
Porous Scaffold Design Using the Distance Field and Triply Periodic Minimal Surface Models
,”
Biomaterials
,
32
(
31
), pp.
7741
7754
.
14.
Chen
,
Y.
,
2006
, “
A Mesh-Based Geometric Modeling Method for General Structures
,”
Proceedings of the ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 26th Computers and Information in Engineering Conference
, Vol. 3,
ASME
,
Philadelphia, PA
,
Sept. 10–13
, pp.
269
281
.
15.
Nguyen
,
D. S.
, and
Vignat
,
F.
,
2016
, “
A Method to Generate Lattice Structure for Additive Manufacturing
,”
IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
,
Bali, Indonesia
, pp.
966
970
.
16.
Gómez
,
S.
,
Vlad
,
M. D.
,
López
,
J.
, and
Fernández
,
E.
,
2016
, “
Design and Properties of 3D Scaffolds for Bone Tissue Engineering
,”
Acta Biomater.
,
42
, pp.
341
350
.
17.
Wang
,
G.
,
Shen
,
L.
,
Zhao
,
J.
,
Liang
,
H.
,
Xie
,
D.
,
Tian
,
Z.
, and
Wang
,
C.
,
2018
, “
Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing
,”
ACS Biomater. Sci. Eng.
,
4
(
2
), pp.
719
727
.
18.
Feng
,
J.
,
Fu
,
J.
,
Shang
,
C.
,
Lin
,
Z.
, and
Li
,
B.
,
2018
, “
Porous Scaffold Design by Solid T-Splines and Triply Periodic Minimal Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
336
, pp.
333
352
.
19.
Yoo
,
D.-J.
,
2012
, “
Heterogeneous Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces
,”
Int. J. Precis. Eng. Manuf.
,
13
(
4
), pp.
527
537
.
20.
Feng
,
J.
,
Fu
,
J.
,
Lin
,
Z.
,
Shang
,
C.
, and
Li
,
B.
,
2018
, “
A Review of the Design Methods of Complex Topology Structures for 3D Printing
,”
Vis. Comput. Ind. Biomed. Art.
,
1
(
1
), p.
5
.
21.
Lu
,
L.
,
Sharf
,
A.
,
Zhao
,
H.
,
Wei
,
Y.
,
Fan
,
Q.
,
Chen
,
X.
,
Savoye
,
Y.
,
Tu
,
C.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2014
, “
Build-to-Last: Strength to Weight 3D Printed Objects
,”
ACM Trans. Graph.
,
33
(
4
), pp.
1
10
.
22.
Martínez
,
J.
,
Song
,
H.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2017
, “
Orthotropic k-Nearest Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
12
.
23.
Zhang
,
X.
,
Xia
,
Y.
,
Wang
,
J.
,
Yang
,
Z.
,
Tu
,
C.
, and
Wang
,
W.
,
2015
, “
Medial Axis Tree—An Internal Supporting Structure for 3D Printing
,”
Comput. Aided Geom. Des.
,
35
, pp.
149
162
.
24.
Medeirose Sá
,
A.
,
Mello
,
V. M.
,
Rodriguez Echavarria
,
K.
, and
Covill
,
D.
,
2015
, “
Adaptive Voids
,”
Vis. Comput.
,
31
(
6
), pp.
799
808
.
25.
Tang
,
Y.
,
Kurtz
,
A.
, and
Zhao
,
Y. F.
,
2015
, “
Bidirectional Evolutionary Structural Optimization (BESO) Based Design Method for Lattice Structure to be Fabricated by Additive Manufacturing
,”
Comput. Aided Des.
,
69
, pp.
91
101
.
26.
Aremu
,
A. O.
,
Brennan-Craddock
,
J. P. J.
,
Panesar
,
A.
,
Ashcroft
,
I. A.
,
Hague
,
R. J.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
.
27.
Li
,
D.
,
Dai
,
N.
,
Jiang
,
X.
, and
Chen
,
X.
,
2016
, “
Interior Structural Optimization Based on the Density-Variable Shape Modeling of 3D Printed Objects
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9
), pp.
1627
1635
.
28.
Gorguluarslan
,
R. M.
,
Gandhi
,
U. N.
,
Song
,
Y.
, and
Choi
,
S.-K.
,
2017
, “
An Improved Lattice Structure Design Optimization Framework Considering Additive Manufacturing Constraints
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
305
319
.
29.
Martínez
,
J.
,
Hornus
,
S.
,
Song
,
H.
, and
Lefebvre
,
S.
,
2018
, “
Polyhedral Voronoi Diagrams for Additive Manufacturing
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
15
.
30.
Ion
,
A.
,
Kovacs
,
R.
,
Schneider
,
O. S.
,
Lopes
,
P.
, and
Baudisch
,
P.
,
2018
, “
Metamaterial Textures
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
,
Association for Computing Machinery
,
New York
,
Apr. 1–12
, pp.
1
12
.
31.
Zhang
,
X.-Y.
,
Yan
,
X.-C.
,
Fang
,
G.
, and
Liu
,
M.
,
2020
, “
Biomechanical Influence of Structural Variation Strategies on Functionally Graded Scaffolds Constructed With Triply Periodic Minimal Surface
,”
Addit. Manuf.
,
32
, p.
101015
.
32.
Ma
,
S.
,
Song
,
K.
,
Lan
,
J.
, and
Ma
,
L.
,
2020
, “
Biological and Mechanical Property Analysis for Designed Heterogeneous Porous Scaffolds Based on the Refined TPMS
,”
J. Mech. Behav. Biomed. Mater.
,
107
, p.
103727
.
33.
Wang
,
W.
,
Wang
,
T. Y.
,
Yang
,
Z.
,
Liu
,
L.
,
Tong
,
X.
,
Tong
,
W.
,
Deng
,
J.
,
Chen
,
F.
, and
Liu
,
X.
,
2013
, “
Cost-Effective Printing of 3D Objects With Skin-Frame Structures
,”
ACM Trans. Graph.
,
32
(
6
), pp.
1
10
.
34.
Wang
,
Z.
,
Srinivasa
,
A.
,
Reddy
,
J. N.
, and
Dubrowski
,
A.
,
2021
, “
PIMesh: An Automatic Point Cloud and Unstructured Mesh Generation Algorithm for Meshless Methods and Finite Element Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
35.
Wang
,
Z.
,
Srinivasa
,
A. R.
,
Reddy
,
J. N.
, and
Dubrowski
,
A.
,
2021
, “
FlowMesher: An Automatic Unstructured Mesh Generation Algorithm With Applications from Finite Element Analysis to Medical Simulations
,” ArXiv210305640.
36.
Wang
,
Z.
, and
Dubrowski
,
A.
,
2021
, “
A Semi-Automatic Method to Create an Affordable Three-Dimensional Printed Splint Using Open-Source and Free Software
,”
Cureus
,
13
(
3
), pp.
1
11
.
You do not currently have access to this content.