Abstract

Collective cell motion is crucial for various physiological and pathological processes, and it highly relies on physical factors in cell microenvironment. However, a quantitative understanding of the effect of the physical factors remains lacking. Here, we studied the collective motion of cells on patterned matrixes with experimental study and numerical simulation by quantitatively analyzing the features of cell collective motion. We found that the collectivity of cell motion is size-dependent. The cells have high collectivity on a small pattern, while they lose the collectivity on the large one. The geometry of the pattern also influences the collective motion by regulating the velocity distribution in the cell layer. Interestingly, the cell density can significantly influence the collective motion by changing the active stress of the cells. For a quantitative understanding of the mechanisms of the effect of these physical factors, we adopted a coarse-grained cell model that considers the active contraction of cells by introducing cell active stress in the model based on the traction-distance law. Our numerical simulation predicted not only the cell velocity, cell collectivity, and cell polarization, but also the stress distribution in the cell layer. The consistency between the numerical predictions and experimental results reveals the relationship between the pattern of collective cell motion and the stress distribution in the cell layer, which sheds light on the studies of tissue engineering for biomedical applications.

References

1.
Park
,
S.
,
Gonzalez
,
D. G.
,
Guirao
,
B.
,
Boucher
,
J. D.
,
Cockburn
,
K.
,
Marsh
,
E. D.
,
Mesa
,
K. R.
, et al
,
2017
, “
Tissue-Scale Coordination of Cellular Behaviour Promotes Epidermal Wound Repair in Live Mice
,”
Nat. Cell Biol.
,
19
(
3
), pp.
155
163
.
2.
Tracy
,
L. E.
,
Minasian
,
R. A.
, and
Caterson
,
E. J.
,
2016
, “
Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound
,”
Adv. Wound Care
,
5
(
3
), pp.
119
136
.
3.
Masopust
,
D.
, and
Schenkel
,
J. M.
,
2013
, “
The Integration of T Cell Migration, Differentiation and Function
,”
Nat. Rev. Immunol.
,
13
(
5
), pp.
309
320
.
4.
Cetera
,
M.
,
Ramirez-San Juan
,
G. R.
,
Oakes
,
P. W.
,
Lewellyn
,
L.
,
Fairchild
,
M. J.
,
Tanentzapf
,
G.
,
Gardel
,
M. L.
, and
Horne-Badovinac
,
S.
,
2014
, “
Epithelial Rotation Promotes the Global Alignment of Contractile Actin Bundles During Drosophila egg Chamber Elongation
,”
Nat. Commun.
,
5
(
1
), p.
5511
.
5.
Friedl
,
P.
, and
Gilmour
,
D.
,
2009
, “
Collective Cell Migration in Morphogenesis, Regeneration and Cancer
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
7
), pp.
445
457
.
6.
Paul
,
C. D.
,
Mistriotis
,
P.
, and
Konstantopoulos
,
K.
,
2017
, “
Cancer Cell Motility: Lessons From Migration in Confined Spaces
,”
Nat. Rev. Cancer
,
17
(
2
), pp.
131
140
.
7.
Hakim
,
V.
, and
Silberzan
,
P.
,
2017
, “
Collective Cell Migration: A Physics Perspective
,”
Rep. Prog. Phys.
,
80
(
7
), p.
076601
.
8.
Ladoux
,
B.
, and
Mège
,
R. M.
,
2017
, “
Mechanobiology of Collective Cell Behaviours
,”
Nat. Rev. Mol. Cell. Biol.
,
18
(
12
), pp.
743
757
.
9.
Rape
,
A. D.
,
Guo
,
W. H.
, and
Wang
,
Y. L.
,
2011
, “
The Regulation of Traction Force in Relation to Cell Shape and Focal Adhesions
,”
Biomaterials
,
32
(
8
), pp.
2043
2051
.
10.
Zhong
,
Y.
, and
Ji
,
B.
,
2013
, “
Impact of Cell Shape on Cell Migration Behavior on Elastic Substrate
,”
Biofabrication
,
5
(
1
), p.
10
.
11.
Zhong
,
Y.
,
He
,
S.
,
Dong
,
C.
,
Ji
,
B.
, and
Hu
,
G.
,
2014
, “
Cell Polarization Energy and Its Implications for Cell Migration
,”
Comptes Rendus Mécanique
,
342
(
5
), pp.
334
346
.
12.
He
,
S.
,
Su
,
Y.
,
Ji
,
B.
, and
Gao
,
H.
,
2014
, “
Some Basic Questions on Mechanosensing in Cell–Substrate Interaction
,”
J. Mech. Phys. Solids
,
70
(
1
), pp.
116
135
.
13.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
14.
Chen
,
C. S.
,
Mrksich
,
M.
,
Huang
,
S.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
1997
, “
Geometric Control of Cell Life and Death
,”
Science
,
276
(
5317
), pp.
1425
1428
.
15.
He
,
S.
,
Li
,
X.
, and
Ji
,
B.
,
2019
, “
Mechanical Force Drives the Polarization and Orientation of Cells
,”
Acta Mech. Sin.
,
35
(
2
), pp.
275
288
.
16.
Li
,
X.
,
He
,
S.
,
Xu
,
J.
,
Li
,
P.
, and
Ji
,
B.
,
2018
, “
Cooperative Contraction Behaviors of a One-Dimensional Cell Chain
,”
Biophys. J.
,
115
(
3
), pp.
554
564
.
17.
Segerer
,
F. J.
,
Thuroff
,
F.
,
Alberola
,
A. P.
,
Frey
,
E.
, and
Radler
,
J. O.
,
2015
, “
Emergence and Persistence of Collective Cell Migration on Small Circular Micropatterns
,”
Phys. Rev. Lett.
,
114
(
22
), p.
8102
.
18.
Petrolli
,
V.
,
Le Goff
,
M.
,
Tadrous
,
M.
,
Martens
,
K.
,
Allier
,
C.
,
Mandula
,
O.
,
Herve
,
L.
, et al
,
2019
, “
Confinement-Induced Transition Between Wavelike Collective Cell Migration Modes
,”
Phys. Rev. Lett.
,
122
(
16
), p.
8101
.
19.
Park
,
J. A.
,
Atia
,
L.
,
Mitchel
,
J. A.
,
Fredberg
,
J. J.
, and
Butler
,
J. P.
,
2016
, “
Collective Migration and Cell Jamming in Asthma, Cancer and Development
,”
J. Cell Sci.
,
129
(
18
), pp.
3375
3383
.
20.
Deforet
,
M.
,
Hakim
,
V.
,
Yevick
,
H. G.
,
Duclos
,
G.
, and
Silberzan
,
P.
,
2014
, “
Emergence of Collective Modes and Tri-dimensional Structures From Epithelial Confinement
,”
Nat. Commun.
,
5
(
1
), p.
3747
.
21.
Tarle
,
V.
,
Gauquelin
,
E.
,
Vedula
,
S. R. K.
,
D'Alessandro
,
J.
,
Lim
,
C. T.
,
Ladoux
,
B.
, and
Gov
,
N. S.
,
2017
, “
Modeling Collective Cell Migration in Geometric Confinement
,”
Phys. Biol.
,
14
(
3
), p.
035001
.
22.
Basan
,
M.
,
Elgeti
,
J.
,
Hannezo
,
E.
,
Rappel
,
W. J.
, and
Levine
,
H.
,
2013
, “
Alignment of Cellular Motility Forces With Tissue Flow as a Mechanism for Efficient Wound Healing
,”
Proc. Natl. Acad. Sci. USA
,
110
(
7
), pp.
2452
2459
.
23.
Lin
,
S.
,
Ye
,
S.
,
Xu
,
G.
,
Li
,
B.
, and
Feng
,
X.
,
2018
, “
Dynamic Migration Modes of Collective Cells
,”
Biophys. J.
,
115
(
9
), pp.
1826
1835
.
24.
Bi
,
D.
,
Lopez
,
J. H.
,
Schwarz
,
J. M.
, and
Manning
,
M. L.
,
2015
, “
A Density-Independent Rigidity Transition in Biological Tissues
,”
Nat. Phys.
,
11
(
12
), pp.
1074
1079
.
25.
Sepulveda
,
N.
,
Petitjean
,
L.
,
Cochet
,
O.
,
Grasland-Mongrain
,
E.
,
Silberzan
,
P.
, and
Hakim
,
V.
,
2013
, “
Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model
,”
PLoS Comput. Biol.
,
9
(
3
), p.
e1002944
.
26.
Doxzen
,
K.
,
Vedula
,
S. R.
,
Leong
,
M. C.
,
Hirata
,
H.
,
Gov
,
N. S.
,
Kabla
,
A. J.
,
Ladoux
,
B.
, and
Lim
,
C. T.
,
2013
, “
Guidance of Collective Cell Migration by Substrate Geometry
,”
Integr. Biol. (Camb)
,
5
(
8
), pp.
1026
1035
.
27.
Barton
,
D. L.
,
Henkes
,
S.
,
Weijer
,
C. J.
, and
Sknepnek
,
R.
,
2017
, “
Active Vertex Model for Cell-Resolution Description of Epithelial Tissue Mechanics
,”
PLoS Comput. Biol.
,
13
(
6
), p.
e1005569
.
28.
Trepat
,
X.
, and
Fredberg
,
J. J.
,
2011
, “
Plithotaxis and Emergent Dynamics in Collective Cellular Migration
,”
Trends Cell Biol.
,
21
(
11
), pp.
638
646
.
29.
Xu
,
J.
,
Xu
,
X.
,
Li
,
X.
,
He
,
S.
,
Li
,
D.
, and
Ji
,
B.
,
2022
, “
Cellular Mechanics of Wound Formation in Single Cell Layer Under Cyclic Stretching
,”
Biophys. J.
,
121
(
2
), pp.
288
299
.
30.
Yang
,
M. T.
,
Fu
,
J. P.
,
Wang
,
Y. K.
,
Desai
,
R. A.
, and
Chen
,
C. S.
,
2011
, “
Assaying Stem Cell Mechanobiology on Microfabricated Elastomeric Substrates With Geometrically Modulated Rigidity
,”
Nat. Protoc.
,
6
(
2
), pp.
187
213
.
31.
Ma
,
H. W.
,
Hyun
,
J.
,
Zhang
,
Z. P.
,
Beebe
,
T. P.
, and
Chilkoti
,
A.
,
2005
, “
Fabrication of Biofunctionalized Quasi-Three-Dimensional Microstructures of a Nonfouling Comb Polymer Using Soft Lithography
,”
Adv. Funct. Mater.
,
15
(
4
), pp.
529
540
.
32.
Lin
,
Y.
,
2010
, “
A Model of Cell Motility Leading to Biphasic Dependence of Transport Speed on Adhesive Strength
,”
J. Mech. Phys. Solids
,
58
(
4
), pp.
502
514
.
33.
Liu
,
C.
,
He
,
S.
,
Li
,
X.
,
Huo
,
B.
, and
Ji
,
B.
,
2016
, “
Mechanics of Cell Mechanosensing on Patterned Substrate
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051014
. doi:10.1115/1.4032907
34.
He
,
S.
,
Liu
,
C.
,
Li
,
X.
,
Ma
,
S.
,
Huo
,
B.
, and
Ji
,
B.
,
2015
, “
Dissecting Collective Cell Behavior in Polarization and Alignment on Micropatterned Substrates
,”
Biophys. J.
,
109
(
3
), pp.
489
500
.
35.
Butler
,
J. P.
,
Tolić-Norrelykke
,
I. M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
Traction Fields, Moments, and Strain Energy That Cells Exert on Their Surroundings
,”
Am. J. Physiol. Cell Physiol.
,
282
(
3
), pp.
C595
C605
.
36.
Schwarz
,
U. S.
, and
Safran
,
S. A.
,
2002
, “
Elastic Interactions of Cells
,”
Phys. Rev. Lett.
,
88
(
4
), pp.
481021
481024
.
37.
Mandal
,
K.
,
Wang
,
I.
,
Vitiello
,
E.
,
Orellana
,
L. A.
, and
Balland
,
M.
,
2014
, “
Cell Dipole Behaviour Revealed by ECM Sub-Cellular Geometry
,”
Nat. Commun.
,
5
(
1
), p.
5749
.
38.
Lin
,
L.
, and
Zeng
,
X.
,
2018
, “
Numerical Investigation of the Role of Intercellular Interactions on Collective Epithelial Cell Migration
,”
Biomech. Model. Mechanobiol.
,
17
(
2
), pp.
439
448
.
39.
Liu
,
Z.
,
Tan
,
J. L.
,
Cohen
,
D. M.
,
Yang
,
M. T.
,
Sniadecki
,
N. J.
,
Ruiz
,
S. A.
,
Nelson
,
C. M.
, and
Chen
,
C. S.
,
2010
, “
Mechanical Tugging Force Regulates the Size of Cell-Cell Junctions
,”
Proc. Natl. Acad. Sci. USA
,
107
(
22
), pp.
9944
9949
.
40.
He
,
S.
, and
Ji
,
B.
,
2017
, “
Mechanics of Cell Mechanosensing in Protrusion and Retraction of Lamellipodium
,”
ACS Biomater. Sci. Eng.
,
3
(
11
), pp.
2943
2953
.
41.
Dokukina
,
I. V.
, and
Gracheva
,
M. E.
,
2010
, “
A Model of Fibroblast Motility on Substrates With Different Rigidities
,”
Biophys. J.
,
98
(
12
), pp.
2794
2803
.
42.
Stricker
,
J.
,
Aratyn-Schaus
,
Y.
,
Oakes
,
P. W.
, and
Gardel
,
M. L.
,
2011
, “
Spatiotemporal Constraints on the Force-Dependent Growth of Focal Adhesions
,”
Biophys. J.
,
100
(
12
), pp.
2883
2893
.
43.
Koride
,
S.
,
Loza
,
A. J.
, and
Sun
,
S. X.
,
2018
, “
Epithelial Vertex Models With Active Biochemical Regulation of Contractility Can Explain Organized Collective Cell Motility
,”
APL Bioeng.
,
2
(
3
), p.
031906
.
44.
Zhong
,
Y.
, and
Ji
,
B.
,
2014
, “
How Do Cells Produce and Regulate the Driving Force in the Process of Migration?
,”
Eur. Phys. J. Spec. Top.
,
223
(
7
), pp.
1373
1390
.
45.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics
,
14
(
1
), pp.
33
38
.
46.
Subramaniyan
,
A. K.
, and
Sun
,
C. T.
,
2008
, “
Continuum Interpretation of Virial Stress in Molecular Simulations
,”
Int. J. Solids Struct.
,
45
(
14–15
), pp.
4340
4346
.
47.
Cormier
,
J.
,
Rickman
,
J. M.
, and
Delph
,
T. J.
,
2001
, “
Stress Calculation in Atomistic Simulations of Perfect and Imperfect Solids
,”
J. Appl. Phys.
,
89
(
1
), pp.
99
104
.
48.
Liu
,
C.
,
Xu
,
J.
,
He
,
S.
,
Zhang
,
W.
,
Li
,
H.
,
Huo
,
B.
, and
Ji
,
B.
,
2018
, “
Collective Cell Polarization and Alignment on Curved Surfaces
,”
J. Mech. Behav. Biomed. Mater.
,
88
, pp.
330
339
.
49.
He
,
S.
,
Green
,
Y.
,
Saeidi
,
N.
,
Li
,
X.
,
Fredberg
,
J. J.
,
Ji
,
B.
, and
Pismen
,
L. M.
,
2020
, “
A Theoretical Model of Collective Cell Polarization and Alignment
,”
J. Mech. Phys. Solids
,
137
, p.
103860
.
50.
Vedula
,
S. R.
,
Leong
,
M. C.
,
Lai
,
T. L.
,
Hersen
,
P.
,
Kabla
,
A. J.
,
Lim
,
C. T.
, and
Ladoux
,
B.
,
2012
, “
Emerging Modes of Collective Cell Migration Induced by Geometrical Constraints
,”
Proc. Natl. Acad. Sci. USA
,
109
(
32
), pp.
12974
12979
.
51.
Yu
,
J.
,
Cai
,
P.
,
Zhang
,
X.
,
Zhao
,
T.
,
Liang
,
L.
,
Zhang
,
S.
,
Liu
,
H.
, and
Chen
,
X.
,
2021
, “
Spatiotemporal Oscillation in Confined Epithelial Motion Upon Fluid-to-Solid Transition
,”
ACS Nano
,
15
(
4
), pp.
7618
7627
.
52.
Oharazawa
,
H.
,
Ibaraki
,
N.
,
Matsui
,
H.
, and
Ohara
,
K.
,
2001
, “
Age-Related Changes of Human Lens Epithelial Cells In vivo
,”
Ophthalmic Res.
,
33
(
6
), pp.
363
366
.
53.
Joyce
,
N. C.
,
2003
, “
Proliferative Capacity of the Corneal Endothelium
,”
Prog. Retinal Eye Res.
,
22
(
3
), pp.
359
389
.
54.
Puliafito
,
A.
,
Primo
,
L.
, and
Celani
,
A.
,
2017
, “
Cell-Size Distribution in Epithelial Tissue Formation and Homeostasis
,”
J. R. Soc. Interface
,
14
(
128
), p.
20170032
.
55.
Vishwakarma
,
M.
,
Thurakkal
,
B.
,
Spatz
,
J. P.
, and
Das
,
T.
,
2020
, “
Dynamic Heterogeneity Influences the Leader-Follower Dynamics During Epithelial Wound Closure: Heterogeneity Begets Better Coordination
,”
Philos. Trans. R. Soc. Lond B. Biol. Sci.
,
375
(
1807
), p.
20190391
.
56.
Duchek
,
P.
,
Somogyi
,
K.
,
Jékely
,
G.
,
Beccari
,
S.
, and
Rørth
,
P.
,
2001
, “
Guidance of Cell Migration by the Drosophila PDGF/VEGF Receptor
,”
Cell
,
107
(
1
), pp.
17
26
.
You do not currently have access to this content.