Abstract

Wearable heaters that can retain conformal contact with human skin have attracted significant attention in recent years due to their enormous potential in thermotherapy. Existing strategies for wearable heaters are constrained by fixed configurations or dimensions, which limit their broad utilities in bio-integrated applications requiring heaters of various sizes. Here, we report a mechanics-guided design of wearable network heaters based on the lattice structure with the negative Poisson’s ratio combined with the uniaxial stretch, which allows for the easy realization of heaters with different sizes and relatively uniform heating performance. Theoretical and computational mechanics studies reveal the fundamental aspects of the design and operation of the network heaters. Thermal analyses of the network heaters integrated with human skin are performed to investigate the influences of design parameters on the skin temperature. This study offers an easy route for wearable network heaters and provides design guidelines for their fabrications.

References

1.
Hattori
,
Y.
,
Falgout
,
L.
,
Lee
,
W.
,
Jung
,
S. Y.
,
Poon
,
E.
,
Lee
,
J. W.
,
Na
,
I.
, et al
,
2014
, “
Multifunctional Skin-Like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing
,”
Adv. Healthcare Mater.
,
3
(
10
), pp.
1597
1607
.
2.
Wang
,
Q.
,
Sheng
,
H.
,
Lv
,
Y.
,
Liang
,
J.
,
Liu
,
Y.
,
Li
,
N.
,
Xie
,
E.
, et al
,
2022
, “
A Skin-Mountable Hyperthermia Patch Based on Metal Nanofiber Network With High Transparency and Low Resistivity Toward Subcutaneous Tumor Treatment
,”
Adv. Funct. Mater.
, p.
2111228
.
3.
Tamayol
,
A.
,
Hassani Najafabadi
,
A.
,
Mostafalu
,
P.
,
Yetisen
,
A. K.
,
Commotto
,
M.
,
Aldhahri
,
M.
,
Abdel-Wahab
,
M. S.
, et al
,
2017
, “
Biodegradable Elastic Nanofibrous Platforms With Integrated Flexible Heaters for On-Demand Drug Delivery
,”
Sci. Rep.
,
7
(
1
), pp.
1
10
.
4.
Cai
,
M.
,
Jiao
,
Z.
,
Nie
,
S.
,
Wang
,
C.
,
Zou
,
J.
, and
Song
,
J.
,
2021
, “
A Multifunctional Electronic Skin Based on Patterned Metal Films for Tactile Sensing With a Broad Linear Response Range
,”
Sci. Adv.
,
7
(
52
), p. eabl8313.
5.
Linghu
,
C.
,
Zhang
,
S.
,
Wang
,
C.
, and
Song
,
J.
,
2018
, “
Transfer Printing Techniques for Flexible and Stretchable Inorganic Electronics
,”
npj Flexible Electron.
,
2
(
1
), pp.
1
14
.
6.
Liu
,
Y.
,
Xu
,
Y.
,
Avila
,
R.
,
Liu
,
C.
,
Xie
,
Z.
,
Wang
,
L.
, and
Yu
,
X.
,
2019
, “
3D Printed Microstructures for Flexible Electronic Devices
,”
Nanotechnology
,
30
(
41
), p.
414001
.
7.
Webb
,
R. C.
,
Bonifas
,
A. P.
,
Behnaz
,
A.
,
Zhang
,
Y.
,
Yu
,
K. J.
,
Cheng
,
H.
,
Shi
,
M.
, et al
,
2013
, “
Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin
,”
Nat. Mater.
,
12
(
10
), pp.
938
944
.
8.
Hong
,
S.
,
Lee
,
H.
,
Lee
,
J.
,
Kwon
,
J.
,
Han
,
S.
,
Suh
,
Y. D.
,
Cho
,
H.
,
Shin
,
J.
,
Yeo
,
J.
, and
Ko
,
S. H.
,
2015
, “
Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications
,”
Adv. Mater.
,
27
(
32
), pp.
4744
4751
.
9.
Choi
,
S.
,
Park
,
J.
,
Hyun
,
W.
,
Kim
,
J.
,
Kim
,
J.
,
Lee
,
Y. B.
, and
Kim
,
D. H.
,
2015
, “
Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy
,”
ACS Nano
,
9
(
6
), pp.
6626
6633
.
10.
Saito
,
M.
,
Kanai
,
E.
,
Fujita
,
H.
,
Aso
,
T.
,
Matsutani
,
N.
, and
Fujie
,
T.
,
2021
, “
Flexible Induction Heater Based on the Polymeric Thin Film for Local Thermotherapy
,”
Adv. Funct. Mater.
,
31
(
32
), p.
2102444
.
11.
Zhao
,
X.
,
Wang
,
L. Y.
,
Tang
,
C. Y.
,
Zha
,
X. J.
,
Liu
,
Y.
,
Su
,
B. H.
, and
Yang
,
W.
,
2020
, “
Smart Ti3C2Tx MXene Fabric With Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications
,”
ACS Nano
,
14
(
7
), pp.
8793
8805
.
12.
Nie
,
S.
,
Cai
,
M.
,
Wang
,
C.
, and
Song
,
J.
,
2020
, “
Fatigue Life Prediction of Serpentine Interconnects on Soft Elastomers for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011011
.
13.
Jang
,
N. S.
,
Kim
,
K. H.
,
Ha
,
S. H.
,
Jung
,
S. H.
,
Lee
,
H. M.
, and
Kim
,
J. M.
,
2017
, “
Simple Approach to High-Performance Stretchable Heaters Based on Kirigami Patterning of Conductive Paper for Wearable Thermotherapy Applications
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
19612
19621
.
14.
Chen
,
X.
,
Yin
,
Y.
,
Yuan
,
W.
,
Nie
,
S.
,
Lin
,
Y.
,
Guo
,
W.
, and
Cui
,
Z.
,
2021
, “
Transparent Thermotherapeutic Skin Patch Based on Highly Conductive and Stretchable Copper Mesh Heater
,”
Adv. Electron. Mater.
,
7
(
12
), p.
2100611
.
15.
Lee
,
Y.
,
Le
,
V. T.
,
Kim
,
J. G.
,
Kang
,
H.
,
Kim
,
E. S.
,
Ahn
,
S. E.
, and
Suh
,
D.
,
2018
, “
Versatile, High-Power, Flexible, Stretchable Carbon Nanotube Sheet Heating Elements Tolerant to Mechanical Damage and Severe Deformation
,”
Adv. Funct. Mater.
,
28
(
8
), p.
1706007
.
16.
Su
,
Y.
,
Ping
,
X.
,
Yu
,
K. J.
,
Lee
,
J. W.
,
Fan
,
J. A.
,
Wang
,
B.
,
Li
,
M.
, et al
,
2017
, “
In-Plane Deformation Mechanics for Highly Stretchable Electronics
,”
Adv. Mater.
,
29
(
8
), p.
1604989
.
17.
Timoshenko
,
S.
, and
Gere
,
J.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
18.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson’s Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
.
19.
Zhang
,
E.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Computational Model of Bio-inspired Soft Network Materials for Analyzing Their Anisotropic Mechanical Properties
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071002
.
20.
Vinnikova
,
S.
,
Fang
,
H.
, and
Wang
,
S.
,
2020
, “
Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101010
.
21.
Yin
,
Y.
,
Zhao
,
Z.
, and
Li
,
Y.
,
2021
, “
Theoretical and Experimental Research on Anisotropic and Nonlinear Mechanics of Periodic Network Materials
,”
J. Mech. Phys. Solids
,
152
, p.
104458
.
22.
Nie
,
S.
,
Zhang
,
C.
, and
Song
,
J.
,
2018
, “
Thermal Management of Epidermal Electronic Devices/Skin System Considering Insensible Sweating
,”
Sci. Rep.
,
8
(
1
), pp.
1
9
.
23.
Yin
,
Y.
,
Cui
,
Y.
,
Li
,
Y.
,
Xing
,
Y.
, and
Li
,
M.
,
2018
, “
Thermal Management of Flexible Wearable Electronic Devices Integrated With Human Skin Considering Clothing Effect
,”
Appl. Therm. Eng.
,
144
, pp.
504
511
.
24.
Yin
,
Y.
,
Li
,
M.
,
Yuan
,
W.
,
Chen
,
X.
, and
Li
,
Y.
,
2019
, “
A Widely Adaptable Analytical Method for Thermal Analysis of Flexible Electronics With Complex Heat Source Structures
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
475
(
2228
), p.
20190402
.
25.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.
26.
Xu
,
F.
,
Lu
,
T. J.
, and
Seffen
,
K. A.
,
2008
, “
Biothermomechanics of Skin Tissues
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1852
1884
.
27.
Cui
,
Y.
,
Li
,
Y.
,
Xing
,
Y.
,
Yang
,
T.
, and
Song
,
J.
,
2018
, “
Three-Dimensional Thermal Analysis of Rectangular Micro-Scale Inorganic Light-Emitting Diodes Integrated With Human Skin
,”
Int. J. Therm. Sci.
,
127
, pp.
321
328
.
28.
Zhang
,
Y.
,
Chad Webb
,
R.
,
Luo
,
H.
,
Xue
,
Y.
,
Kurniawan
,
J.
,
Cho
,
N. H.
,
Krishnan
,
S.
,
Li
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature
,”
Adv. Healthcare Mater.
,
5
(
1
), pp.
119
127
.
29.
Wondu
,
E.
,
Lule
,
Z.
, and
Kim
,
J.
,
2019
, “
Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated Via Melt Compounding
,”
Polymers
,
11
(
7
), p.
1103
.
30.
Yin
,
Y.
,
Li
,
Y.
, and
Li
,
M.
,
2020
, “
Thermal Analysis of the Flexible Electronics Affixed on Large Curvature Myocardium Surface
,”
Int. J. Heat Mass Transfer
,
147
, p.
118983
.
You do not currently have access to this content.