Abstract

This article presents a novel derivation for the governing equations of geometrically curved and twisted three-dimensional Timoshenko beams. The kinematic model of the beam was derived rigorously by adopting a parametric description of the axis of the beam, using the local Frenet–Serret reference system, and introducing the constraint of the beam cross ection planarity into the classical, first-order strain versus displacement relations for Cauchy’s continua. The resulting beam kinematic model includes a multiplicative term consisting of the inverse of the Jacobian of the beam axis curve. This term is not included in classical beam formulations available in the literature; its contribution vanishes exactly for straight beams and is negligible only for curved and twisted beams with slender geometry. Furthermore, to simplify the description of complex beam geometries, the governing equations were derived with reference to a generic position of the beam axis within the beam cross section. Finally, this study pursued the numerical implementation of the curved beam formulation within the conceptual framework of isogeometric analysis, which allows the exact description of the beam geometry. This avoids stress locking issues and the corresponding convergence problems encountered when classical straight beam finite elements are used to discretize the geometry of curved and twisted beams. Finally, this article presents the solution of several numerical examples to demonstrate the accuracy and effectiveness of the proposed theoretical formulation and numerical implementation.

References

1.
Scott
,
D.
,
Farnsworth
,
D.
,
Jackson
,
M.
, and
Clark
,
M.
,
2007
, “
The Effects of Complex Geometry on Tall Towers
,”
Struct. Design Tall Special Build.
,
16
(
4
), pp.
441
455
.
2.
Golasz-Szolomicka
,
H.
, and
Szolomicki
,
J.
,
2018
, “
Architectural and Structural Analysis of Selected Twisted Tall Buildings
,”
IOP Conference Series: Materials Science and Engineering Volume 47
,
Prague, Czech Republic
,
June 18–22
, p.
052050
.
3.
Scaramozzino
,
D.
,
Lacidogna
,
G.
, and
Carpinteri
,
A.
,
2020
, “
New Trends Towards Enhanced Structural Efficiency and Aesthetic Potential in Tall Buildings: The Case of Diagrids
,”
Appl. Sci.
,
10
(
11
), p.
3917
.
4.
Bauchau
,
O.
, and
Hong
,
C.
,
1988
, “
Nonlinear Composite Beam Theory
,”
J. Appl. Mech.
,
55
(
1
), p.
156
.
5.
Amoozgar
,
M.
,
Fazelzadeh
,
S. A.
,
Friswell
,
M. I.
, and
Hodges
,
D. H.
,
2019
, “
Aeroelastic Stability Analysis of Tailored Pretwisted Wings
,”
AIAA. J.
,
57
(
10
), pp.
4458
4466
.
6.
Migliaccio
,
G.
,
Ruta
,
G.
,
Bennati
,
S.
, and
Barsotti
,
R.
,
2019
, “
Curved and Twisted Beam Models for Aeroelastic Analysis of Wind Turbine Blades in Large Displacement
,”
Conference of the Italian Association of Theoretical and Applied Mechanics
,
Rome, Italy
,
Sept. 15–19
, Springer, pp.
1785
1797
.
7.
Roy
,
S.
, and
Yu
,
W.
,
2009
, “
A Coupled Timoshenko Model for Smart Slender Structures
,”
Int. J. Solids. Struct.
,
46
(
13
), pp.
2547
2555
.
8.
Sachdeva
,
C.
,
Gupta
,
M.
, and
Hodges
,
D. H.
,
2018
, “
Modeling of Initially Curved and Twisted Smart Beams Using Intrinsic Equations
,”
Int. J. Solids. Struct.
,
148
(
Special Issue
), pp.
3
13
.
9.
Asdaque
,
P. B.
, and
Roy
,
S.
,
2021
, “
Geometrically Exact, Intrinsic Mixed Variational Formulation for Smart, Slender Multilink Composite Structures
,”
J. Intel. Mate. Syst. Struct.
,
33
(
6
), pp.
839
860
.
10.
Reissner
,
E.
,
1985
, “
Reflections on the Theory of Elastic Plates
,”
Appl. Mech. Rev.
,
38
(
11
), p.
1453
.
11.
Sandhu
,
J.
,
Stevens
,
K.
, and
Davies
,
G.
,
1990
, “
A 3-d, Co-rotational, Curved and Twisted Beam Element
,”
Comput. Struct.
,
35
(
1
), pp.
69
79
.
12.
Crisfield
,
M. A.
,
1990
, “
A Consistent Co-rotational Formulation for Non-Linear, Three-Dimensional, Beam-Elements
,”
Comput. Methods Appl. Mech. Eng.
,
81
(
2
), pp.
131
150
.
13.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1991
, “
A Geometrically-Exact Rod Model Incorporating Shear and Torsion-Warping Deformation
,”
Int. J. Solids. Struct.
,
27
(
3
), pp.
371
393
.
14.
Bouclier
,
R.
,
Elguedj
,
T.
, and
Combescure
,
A.
,
2012
, “
Locking Free Isogeometric Formulations of Curved Thick Beams
,”
Comput. Methods. Appl. Mech. Eng.
,
245
, pp.
144
162
.
15.
Cazzani
,
A.
,
Malagù
,
M.
, and
Turco
,
E.
,
2016
, “
Isogeometric Analysis of Plane-Curved Beams
,”
Math. Mech. Solids
,
21
(
5
), pp.
562
577
.
16.
Weeger
,
O.
,
Yeung
,
S.-K.
, and
Dunn
,
M. L.
,
2017
, “
Isogeometric Collocation Methods for Cosserat Rods and Rod Structures
,”
Comput. Methods. Appl. Mech. Eng.
,
316
(
Special Issue
), pp.
100
122
.
17.
Gan
,
B. S.
,
2018
,
An Isogeometric Approach to Beam Structures
,
Springer
,
Cham, Switzerland
.
18.
Kagan
,
P.
,
Fischer
,
A.
, and
Bar-Yoseph
,
P. Z.
,
1998
, “
New B-Spline Finite Element Approach for Geometrical Design and Mechanical Analysis
,”
Int. J. Numer. Methods Eng.
,
41
(
3
), pp.
435
458
.
19.
Rogers
,
D. F.
,
2000
,
An Introduction to NURBS: With Historical Perspective
,
Morgan Kaufmann
,
San Francisco, CA
.
20.
Hughes
,
T. J.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
21.
Kiendl
,
J.
,
Bletzinger
,
K.-U.
,
Linhard
,
J.
, and
Wüchner
,
R.
,
2009
, “
Isogeometric Shell Analysis With Kirchhoff–Love Elements
,”
Comput. Methods. Appl. Mech. Eng.
,
198
(
49–52
), pp.
3902
3914
.
22.
Benson
,
D.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Hughes
,
T.
,
2010
, “
Isogeometric Shell Analysis: The Reissner–Mindlin Shell
,”
Comput. Methods. Appl. Mech. Eng.
,
199
(
5–8
), pp.
276
289
.
23.
Echter
,
R.
,
Oesterle
,
B.
, and
Bischoff
,
M.
,
2013
, “
A Hierarchic Family of Isogeometric Shell Finite Elements
,”
Comput. Methods. Appl. Mech. Eng.
,
254
, pp.
170
180
.
24.
Auricchio
,
F.
,
Da Veiga
,
L. B.
,
Kiendl
,
J.
,
Lovadina
,
C.
, and
Reali
,
A.
,
2013
, “
Locking-Free Isogeometric Collocation Methods for Spatial Timoshenko Rods
,”
Comput. Methods. Appl. Mech. Eng.
,
263
, pp.
113
126
.
25.
Hu
,
Q.
,
Xia
,
Y.
,
Zou
,
R.
, and
Hu
,
P.
,
2016
, “
A Global Formulation for Complex Rod Structures in Isogeometric Analysis
,”
Int. J. Mech. Sci.
,
115
(
1
), pp.
736
745
.
26.
Bauer
,
A.
,
Breitenberger
,
M.
,
Philipp
,
B.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2016
, “
Nonlinear Isogeometric Spatial Bernoulli Beam
,”
Comput. Methods. Appl. Mech. Eng.
,
303
, pp.
101
127
.
27.
Zhang
,
G.
,
Alberdi
,
R.
, and
Khandelwal
,
K.
,
2016
, “
Analysis of Three-Dimensional Curved Beams Using Isogeometric Approach
,”
Eng. Struct.
,
117
, pp.
560
574
.
28.
da Veiga
,
L. B.
,
Lovadina
,
C.
, and
Reali
,
A.
,
2012
, “
Avoiding Shear Locking for the Timoshenko Beam Problem Via Isogeometric Collocation Methods
,”
Comput. Methods. Appl. Mech. Eng.
,
241
, pp.
38
51
.
29.
Echter
,
R.
, and
Bischoff
,
M.
,
2010
, “
Numerical Efficiency, Locking and Unlocking of NURBS Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
374
382
.
30.
Hosseini
,
S. F.
,
Hashemian
,
A.
,
Moetakef-Imani
,
B.
, and
Hadidimoud
,
S.
,
2018
, “
Isogeometric Analysis of Free-Form Timoshenko Curved Beams Including the Nonlinear Effects of Large Deformations
,”
Acta. Mech. Sin.
,
34
(
4
), pp.
728
743
.
31.
Doğruoğlu
,
A. N.
, and
Kömürcü
,
S.
,
2019
, “
Nonlinear Mixed Finite Element Formulations for the Analysis of Planar Curved Beams
,”
Comput. Struct.
,
222
(
Special Issue
), pp.
63
81
.
32.
Crenshaw
,
H. C.
, and
Edelstein-Keshet
,
L.
,
1993
, “
Orientation by Helical Motion–ii, Changing the Direction of the Axis of Motion
,”
Bull. Mathe. Biology
,
55
(
1
), pp.
213
230
.
33.
Strang
,
G.
,
2003
,
Introduction to Linear Algebra
,
Wellesley-Cambridge Press
,
Wellesley, MA
.
34.
Borković
,
A.
,
Kovačević
,
S.
,
Radenković
,
G.
,
Milovanović
,
S.
, and
Guzijan-Dilber
,
M.
,
2018
, “
Rotation-free Isogeometric Analysis of an Arbitrarily Curved Plane Bernoulli–Euler Beam
,”
Comput. Methods. Appl. Mech. Eng.
,
334
, pp.
238
267
.
35.
Hutchinson
,
J.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
87
92
.
36.
Hughes
,
T. J.
,
Reali
,
A.
, and
Sangalli
,
G.
,
2008
, “
Duality and Unified Analysis of Discrete Approximations in Structural Dynamics and Wave Propagation: Comparison of P-Method Finite Elements With K-Method Nurbs
,”
Comput. Methods. Appl. Mech. Eng.
,
197
(
49–50
), pp.
4104
4124
.
37.
Da Veiga
,
L. B.
,
Buffa
,
A.
,
Rivas
,
J.
, and
Sangalli
,
G.
,
2011
, “
Some Estimates for H–p–k-Refinement in Isogeometric Analysis
,”
Numer. Math.
,
118
(
2
), pp.
271
305
.
38.
Cottrell
,
J. A.
,
Hughes
,
T. J.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Nguyen
,
V. P.
,
Anitescu
,
C.
,
Bordas
,
S. P.
, and
Rabczuk
,
T.
,
2015
, “
Isogeometric Analysis: An Overview and Computer Implementation Aspects
,”
Math. Comput. Simul.
,
117
, pp.
89
116
.
You do not currently have access to this content.