Abstract

The multiplicative perturbation method with precise matrix exponential computation is developed for the buckling analysis of axially compressed truncated conical shells (TCSs) that are commonly encountered in engineering. To overcome the limitation of conventional methods in terms of assuming solution forms, the multiplicative perturbation method is introduced to tackle the governing partial differential equations (PDEs) with variable coefficients. Specifically, the governing equation in matrix form for a buckled TCS is first formulated in the state space. The multiplicative perturbation method is then employed to convert the matrix differential equation with variable coefficients into the state transition equations with constant coefficients, in which the arisen matrix exponential is computed by the precise integral method. Finally, the state transition equations and the boundary conditions are integrated into an entire matrix equation, whose solution provides the buckling loads and buckling modes of the TCS. The convergence study and comprehensive numerical and graphic results are presented. Given the new solutions, the effects of some crucial size parameters as well as boundary conditions on the critical buckling loads are quantitatively studied. Due to the merits on solving PDEs with variable coefficients, the developed method may be extended to more intractable plate and shell problems.

References

1.
Leissa
,
A. W.
,
1973
,
Vibration of Shells, Scientific and Technical Information Office
,
National Aeronautics and Space Administration
,
Washington, DC
.
2.
Sofiyev
,
A. H.
,
2018
, “
Application of the FOSDT to the Solution of Buckling Problem of FGM Sandwich Conical Shells Under Hydrostatic Pressure
,”
Composites, Part B
,
144
, pp.
88
98
.
3.
Sofiyev
,
A. H.
,
2009
, “
The Vibration and Stability Behavior of Freely Supported FGM Conical Shells Subjected to External Pressure
,”
Compos. Struct.
,
89
(
3
), pp.
356
366
.
4.
Sofiyev
,
A. H.
,
2019
, “
The Buckling and Vibration Analysis of Coating-FGM-Substrate Conical Shells Under Hydrostatic Pressure With Mixed Boundary Conditions
,”
Compos. Struct.
,
209
, pp.
686
693
.
5.
Sofiyev
,
A. H.
,
Kuruoglu
,
N.
, and
Halilov
,
H. M.
,
2010
, “
The Vibration and Stability of Non-homogeneous Orthotropic Conical Shells With Clamped Edges Subjected to Uniform External Pressures
,”
Appl. Math. Model.
,
34
(
7
), pp.
1807
1822
.
6.
Sofiyev
,
A. H.
,
Bayramov
,
R. P.
, and
Heydarov
,
S. H.
,
2020
, “
The Stability of Composite Conical Shells Covered by Carbon Nanotube-Reinforced Coatings Under External Pressures
,”
Acta Mech.
,
231
(
11
), pp.
4547
4562
.
7.
Sofiyev
,
A. H.
,
Zerin
,
Z.
, and
Kuruoglu
,
N.
,
2017
, “
Thermoelastic Buckling of FGM Conical Shells Under Non-Linear Temperature Rise in the Framework of the Shear Deformation Theory
,”
Composites, Part B
,
108
, pp.
279
290
.
8.
Torabi
,
J.
,
Kiani
,
Y.
, and
Eslami
,
M. R.
,
2013
, “
Linear Thermal Buckling Analysis of Truncated Hybrid FGM Conical Shells
,”
Composites, Part B
,
50
, pp.
265
272
.
9.
Talebitooti
,
M.
,
2016
, “
Analytical and Finite-Element Solutions for the Buckling of Composite Sandwich Conical Shell With Clamped Ends Under External Pressure
,”
Arch. Appl. Mech.
,
87
(
1
), pp.
59
73
.
10.
Duc
,
N. D.
,
Seung-Eock
,
K.
, and
Chan
,
D. Q.
,
2017
, “
Thermal Buckling Analysis of FGM Sandwich Truncated Conical Shells Reinforced by FGM Stiffeners Resting on Elastic Foundations Using FSDT
,”
J. Therm. Stresses
,
41
(
3
), pp.
331
365
.
11.
Duc
,
N. D.
,
Cong
,
P. H.
,
Tuan
,
N. D.
,
Tran
,
P.
, and
Thanh
,
N. V.
,
2017
, “
Thermal and Mechanical Stability of Functionally Graded Carbon Nanotubes (FG CNT)-Reinforced Composite Truncated Conical Shells Surrounded by the Elastic Foundations
,”
Thin-Walled Struct.
,
115
, pp.
300
310
.
12.
Bohlooly
,
M.
,
Kouchakzadeh
,
M. A.
,
Mirzavand
,
B.
, and
Noghabi
,
M.
,
2020
, “
Dynamic Instability Characteristics of Advanced Grid Stiffened Conical Shell With Laminated Composite Skins
,”
J. Sound Vib.
,
488
, p.
115572
.
13.
Rahmani
,
M.
,
Mohammadi
,
Y.
, and
Kakavand
,
F.
,
2020
, “
Buckling Analysis of Different Types of Porous FG Conical Sandwich Shells in Various Thermal Surroundings
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
4
), pp.
1
16
.
14.
Zarei
,
M.
,
Rahimi
,
G. H.
, and
Hemmatnezhad
,
M.
,
2020
, “
Global Buckling Analysis of Laminated Sandwich Conical Shells With Reinforced Lattice Cores Based on the First-Order Shear Deformation Theory
,”
Int. J. Mech. Sci.
,
187
, p.
105872
.
15.
Hoa
,
L. K.
,
Phi
,
B. G.
,
Chan
,
D. Q.
, and
Hieu
,
D. V.
,
2022
, “
Buckling Analysis of FG Porous Truncated Conical Shells Resting on Elastic Foundations in the Framework of the Shear Deformation Theory
,”
Adv. Appl. Math. Mech.
,
14
(
1
), pp.
218
247
.
16.
Sofiyev
,
A. H.
,
2011
, “
Non-Linear Buckling Behavior of FGM Truncated Conical Shells Subjected to Axial Load
,”
Int. J. Non-Linear Mech.
,
46
(
5
), pp.
711
719
.
17.
Sofiyev
,
A. H.
,
2011
, “
Influence of the Initial Imperfection on the Non-linear Buckling Response of FGM Truncated Conical Shells
,”
Int. J. Mech. Sci.
,
53
(
9
), pp.
753
761
.
18.
Duc
,
N. D.
, and
Cong
,
P. H.
,
2015
, “
Nonlinear Thermal Stability of Eccentrically Stiffened Functionally Graded Truncated Conical Shells Surrounded on Elastic Foundations
,”
Eur. J. Mech. A: Solids
,
50
, pp.
120
131
.
19.
Hoa
,
L. K.
,
Hoai
,
B. T. T.
, and
Chan
,
D. Q.
,
2018
, “
Nonlinear Thermomechanical Postbuckling Analysis of ES-FGM Truncated Conical Shells Resting on Elastic Foundations
,”
Mech. Adv. Mater. Struct.
,
26
(
13
), pp.
1089
1103
.
20.
Thai
,
D. K.
,
Tu
,
T. M.
,
Hoa
,
L. K.
,
Hung
,
D. X.
, and
Linh
,
N. N.
,
2018
, “
Nonlinear Stability Analysis of Eccentrically Stiffened Functionally Graded Truncated Conical Sandwich Shells With Porosity
,”
Materials (Basel)
,
11
(
11
), p.
2200
.
21.
Duc
,
N. D.
,
Seung-Eock
,
K.
,
Khoa
,
N. D.
, and
Chan
,
D. Q.
,
2020
, “
Nonlinear Buckling and Post-Buckling Analysis of Shear Deformable Stiffened Truncated Conical Sandwich Shells With Functionally Graded Face Sheets and a Functionally Graded Porous Core
,”
J. Sandw. Struct. Mater.
,
23
(
7
), pp.
2700
2735
.
22.
Long
,
V. T.
, and
Tung
,
H. V.
,
2021
, “
Thermal Nonlinear Buckling of Shear Deformable Functionally Graded Cylindrical Shells With Porosities
,”
AIAA J.
,
59
(
6
), pp.
2233
2241
.
23.
Azad
,
A. I.
, and
Burgueño
,
R.
,
2021
, “
Semi-Analytical Model to Predict the Elastic Post-Buckling Response of Axially Compressed Cylindrical Shells With Tailored Distributed Stiffness
,”
ASME J. Appl. Mech.
,
88
(
9
), p.
091006
.
24.
Shadmehri
,
F.
,
Hoa
,
S. V.
, and
Hojjati
,
M.
,
2012
, “
Buckling of Conical Composite Shells
,”
Compos. Struct.
,
94
(
2
), pp.
787
792
.
25.
Shakouri
,
M.
,
Sharghi
,
H.
, and
Kouchakzadeh
,
M. A.
,
2016
, “
Torsional Buckling of Generally Laminated Conical Shell
,”
Meccanica
,
52
(
4–5
), pp.
1051
1061
.
26.
Castro
,
S. G. P.
,
Mittelstedt
,
C.
,
Monteiro
,
F. A. C.
,
Arbelo
,
M. A.
,
Degenhardt
,
R.
, and
Ziegmann
,
G.
,
2015
, “
A Semi-Analytical Approach for Linear and Non-Linear Analysis of Unstiffened Laminated Composite Cylinders and Cones Under Axial, Torsion and Pressure Loads
,”
Thin-Walled Struct.
,
90
, pp.
61
73
.
27.
Chai
,
Y.
,
Song
,
Z.
, and
Li
,
F.
,
2018
, “
Investigations on the Aerothermoelastic Properties of Composite Laminated Cylindrical Shells With Elastic Boundaries in Supersonic Airflow Based on the Rayleigh–Ritz Method
,”
Aerosp. Sci. Technol.
,
82–83
, pp.
534
544
.
28.
Mehri
,
M.
,
Asadi
,
H.
, and
Wang
,
Q.
,
2016
, “
Buckling and Vibration Analysis of a Pressurized CNT Reinforced Functionally Graded Truncated Conical Shell Under an Axial Compression Using HDQ Method
,”
Comput. Methods Appl. Mech. Eng.
,
303
, pp.
75
100
.
29.
Hajmohammad
,
M. H.
,
Azizkhani
,
M. B.
, and
Kolahchi
,
R.
,
2018
, “
Multiphase Nanocomposite Viscoelastic Laminated Conical Shells Subjected to Magneto-Hygrothermal Loads: Dynamic Buckling Analysis
,”
Int. J. Mech. Sci.
,
137
, pp.
205
213
.
30.
Kiani
,
Y.
,
2019
, “
Buckling of Functionally Graded Graphene Reinforced Conical Shells Under External Pressure in Thermal Environment
,”
Composites, Part B
,
156
, pp.
128
137
.
31.
Mirzaei
,
M.
, and
Kiani
,
Y.
,
2015
, “
Thermal Buckling of Temperature Dependent FG-CNT Reinforced Composite Conical Shells
,”
Aerosp. Sci. Technol.
,
47
, pp.
42
53
.
32.
Yang
,
J.
, and
Xia
,
P.
,
2015
, “
Corotational Nonlinear Dynamic Analysis of Thin-Shell Structures With Finite Rotations
,”
AIAA J.
,
53
(
3
), pp.
663
677
.
33.
Liang
,
K.
, and
Sun
,
Q.
,
2017
, “
Reduced-Order Modeling Analysis of Shell Structures Buckling Using a Co-rotational Solid-Shell Element
,”
Aerosp. Sci. Technol.
,
70
, pp.
435
444
.
34.
Muresan
,
A.-A.
,
Nedelcu
,
M.
, and
Gonçalves
,
R.
,
2019
, “
GBT-Based FE Formulation to Analyse the Buckling Behaviour of Isotropic Conical Shells With Circular Cross-Section
,”
Thin-Walled Struct.
,
134
, pp.
84
101
.
35.
Faroughi
,
S.
,
Shafei
,
E.
, and
Rabczuk
,
T.
,
2020
, “
Anisotropic Solid-Like Shells Modeled With NURBS-Based Isogeometric Approach: Vibration, Buckling, and Divergence Analyses
,”
Comput. Methods Appl. Mech. Eng.
,
359
, p.
112668
.
36.
Leonetti
,
L.
,
Magisano
,
D.
,
Liguori
,
F.
, and
Garcea
,
G.
,
2018
, “
An Isogeometric Formulation of the Koiter’s Theory for Buckling and Initial Post-Buckling Analysis of Composite Shells
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
387
410
.
37.
Nguyen
,
T. N.
,
Thai
,
C. H.
,
Luu
,
A.-T.
,
Nguyen-Xuan
,
H.
, and
Lee
,
J.
,
2019
, “
NURBS-Based Postbuckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Shells
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
983
1003
.
38.
Notenboom
,
R. P.
, and
Arbocz
,
J.
,
2011
, “
Nonlinear Mode Interaction for Thin Circular Cylindrical Anisotropic Shells
,”
AIAA J.
,
49
(
4
), pp.
695
702
.
39.
Shakouri
,
M.
, and
Kouchakzadeh
,
M. A.
,
2013
, “
Stability Analysis of Joined Isotropic Conical Shells Under Axial Compression
,”
Thin-Walled Struct.
,
72
, pp.
20
27
.
40.
Kazemi
,
M. E.
,
Kouchakzadeh
,
M. A.
, and
Shakouri
,
M.
,
2018
, “
Stability Analysis of Generally Laminated Conical Shells With Variable Thickness Under Axial Compression
,”
Mech. Adv. Mater. Struct.
,
27
(
16
), pp.
1373
1386
.
41.
Zarei
,
M.
,
Rahimi
,
G. H.
, and
Hemmatnezhad
,
M.
,
2021
, “
On the Buckling Resistance of Grid-Stiffened Composite Conical Shells Under Compression
,”
Eng. Struct.
237
, p.
112213
.
42.
Gerasimidis
,
S.
,
Virot
,
E.
,
Hutchinson
,
J. W.
, and
Rubinstein
,
S. M.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
.
43.
Cox
,
B. S.
,
Groh
,
R. M. J.
, and
Pirrera
,
A.
,
2019
, “
Nudging Axially Compressed Cylindrical Panels Toward Imperfection Insensitivity
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071010
.
44.
Gerasimidis
,
S.
, and
Hutchinson
,
J. W.
,
2021
, “
Dent Imperfections in Shell Buckling: The Role of Geometry, Residual Stress, and Plasticity
,”
ASME J. Appl. Mech.
,
88
(
3
), p.
031007
.
45.
Wang
,
B.
,
Shi
,
Y.
,
Li
,
R.
, and
Wang
,
B.
,
2018
, “
A Simplified Indirect Measuring Method for the Notch Stress in a Thin Cylindrical Shell
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071009
.
46.
Shi
,
Y.
,
Wang
,
B.
,
Wu
,
H.
,
Wang
,
B.
,
Liu
,
C.
, and
Li
,
R.
,
2020
, “
A Theoretical and Experimental Study on Extreme Stress Concentration-Free Designs of Circumferentially Notched Thin Cylindrical Shells
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
021004
.
47.
Tan
,
S. J.
, and
Zhong
,
W. X.
,
2007
, “
Numerical Solutions of Linear Quadratic Control for Time-Varying Systems Via Symplectic Conservative Perturbation
,”
Appl. Math. Mech. (English Ed.)
,
28
(
3
), pp.
277
287
.
48.
Fu
,
M. H.
,
Lu
,
K. L.
, and
Lan
,
L. H.
,
2012
, “
High Order Symplectic Conservative Perturbation Method for Time-Varying Hamiltonian System
,”
Acta Mech. Sin.
,
28
(
3
), pp.
885
890
.
49.
Zhong
,
W.-X.
,
2004
, “
On Precise Integration Method
,”
J. Comput. Appl. Math.
,
163
(
1
), pp.
59
78
.
50.
Tong
,
L.
, and
Wang
,
T. K.
,
1992
, “
Simple Solutions for Buckling of Laminated Conical Shells
,”
Int. J. Mech. Sci.
,
34
(
2
), pp.
93
111
.
51.
Seide
,
P.
,
1956
, “
Axisymmetrical Buckling of Circular Cones Under Axial Compression
,”
ASME J. Appl. Mech.
,
23
(
4
), pp.
625
628
.
52.
Baruch
,
M.
,
Harari
,
O.
, and
Singer
,
J.
,
1970
, “
Low Buckling Loads of Axially Compressed Conical Shells
,”
ASME J. Appl. Mech.E
,
37
(
2
), p.
384
392
.
53.
Sofiyev
,
A. H.
, and
Kuruoglu
,
N.
,
2011
, “
The Non-linear Buckling Analysis of Cross-Ply Laminated Orthotropic Truncated Conical Shells
,”
Compos. Struct.
,
93
(
11
), pp.
3006
3012
.
54.
Simulia
,
2013
,
ABAQUS Version 6.13 User's Manual
,
Dassault Systems Simulia Corporation
,
Providence, RI
.
You do not currently have access to this content.