Abstract

The tear test is widely used to measure the fracture toughness of thin rubber sheets and polymer films. More recently, the tear test has been applied to polymer materials produced by melt extrusion additive manufacturing to measure the fracture toughness of a single weld between two printed (extruded) filaments. This paper presents a finite element modeling study of the tearing of a weld between two printed filaments to investigate the mechanics of the tear test and the effects of geometry and material properties on the measured tear energy. The mechanical behavior of the printed filaments was described by a viscoplastic model for glassy polymers and the weld was represented using cohesive surface elements and the Xu–Needleman traction–separation relationship. The geometric model and the material parameters were chosen based on experimental measurements. The tear energy varied with the specimen dimensions, the curvature of the printed filaments, the yield stress relative to the cohesive strength of the weld, and the post-yield stress drop. The effects of the hardening modulus were small. These factors altered the viscoplastic dissipation in the material ahead of the propagating crack tip. The results showed that viscoplastic dissipation could constitute a large fraction of the tear energy and is strongly affected by the specimen dimensions and the geometry and material properties of the printed filament. There was also considerable mode mixty in the tear energy. The findings can be used to design tear tests to measure the intrinsic fracture toughness of the weld.

References

1.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Polym. Sci.
,
10
(
3
), pp.
291
318
.
2.
ASTM D 1938-19
,
2020
, “
Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers
,”
Standard, ASTM International
,
West Conshohocken, PA
.
3.
ASTM D 1938-19
,
2019
, “
Standard Test Method for Tear-Propagation Resistance (Trouser Tear) of Plastic Film and Thin Sheeting by a Single-Tear Method
,”
Standard, ASTM International
,
West Conshohocken, PA
.
4.
Muscat-Fenech
,
C.
,
Liu
,
J.
, and
Atkins
,
A.
,
1992
, “
The Trousers Tearing Test With Ductile Metal Sheets
,”
J. Mater. Process. Technol.
,
32
(
1
), pp.
301
315
.
5.
Kimura
,
H.
, and
Masumoto
,
T.
,
1975
, “
Fracture Toughness of Amorphous Metals
,”
Scr. Metall.
,
9
(
3
), pp.
211
221
.
6.
Chin-Purcell
,
M. V.
, and
Lewis
,
J. L.
,
1996
, “
Fracture of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
118
(
4
), pp.
545
556
.
7.
Purslow
,
P. P.
,
1983
, “
Measurement of the Fracture Toughness of Extensible Connective Tissues
,”
J. Mater. Sci.
,
18
(
12
), pp.
3591
3598
.
8.
Tonsomboon
,
K.
,
Koh
,
C. T.
, and
Oyen
,
M. L.
,
2014
, “
Time-Dependent Fracture Toughness of Cornea
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
116
123
.
9.
ISO/ASTM52900-15
,
2015
, “
Standard Terminology for Additive Manufacturing – General Principals – Terminology
,”
Standard, ASTM International
,
West Conshohocken, PA
.
10.
Davis
,
C. S.
,
Hillgartner
,
K. E.
,
Han
,
S. H.
, and
Seppala
,
J. E.
,
2017
, “
Mechanical Strength of Welding Zones Produced by Polymer Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
16
, pp.
162
166
.
11.
Montero
,
M.
,
Roundy
,
S.
,
Odell
,
D.
,
Ahn
,
S.-H.
, and
Wright
,
P.
, “
Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments
,”
Proceedings of the Rapid Prototyping and Manufacturing Conference
,
Cincinnati, OH
,
May 15–17
.
12.
Tanikella
,
N. G.
,
Wittbrodt
,
B.
, and
Pearce
,
J. M.
,
2017
, “
Tensile Strength of Commercial Polymer Materials for Fused Filament Fabrication 3D Printing
,”
Addit. Manuf.
,
15
, pp.
40
47
.
13.
Koch
,
C.
,
Van Hulle
,
L.
, and
Rudolph
,
N.
,
2017
, “
Investigation of Mechanical Anisotropy of the Fused Filament Fabrication Process Via Customized Tool Path Generation
,”
Addit. Manuf.
,
16
, pp.
138
145
.
14.
Papon
,
E. A.
, and
Haque
,
A.
,
2019
, “
Fracture Toughness of Additively Manufactured Carbon Fiber Reinforced Composites
,”
Addit. Manuf.
,
26
, pp.
41
52
.
15.
Seppala
,
J. E.
,
Hoon Han
,
S.
,
Hillgartner
,
K. E.
,
Davis
,
C. S.
, and
Migler
,
K. B.
,
2017
, “
Weld Formation During Material Extrusion Additive Manufacturing
,”
Soft Matter
,
13
(
38
), pp.
6761
6769
.
16.
Nguyen
,
N. A.
,
Bowland
,
C. C.
, and
Naskar
,
A. K.
,
2018
, “
A General Method to Improve 3D-Printability and Inter-Layer Adhesion in Lignin-Based Composites
,”
Appl. Mater. Today
,
12
, pp.
138
152
.
17.
Fang
,
L.
,
Yan
,
Y.
,
Agarwal
,
O.
,
Seppala
,
J. E.
,
Hemker
,
K. J.
, and
Kang
,
S. H.
,
2020
, “
Processing–Structure–Property Relationships of Bisphenol-a-Polycarbonate Samples Prepared by Fused Filament Fabrication
,”
Addit. Manuf.
,
35
, p.
101285
.
18.
Charlon
,
S.
,
Le Boterff
,
J.
, and
Soulestin
,
J.
,
2021
, “
Fused Filament Fabrication of Polypropylene: Influence of the Bead Temperature on Adhesion and Porosity
,”
Addit. Manuf.
,
38
, p.
101838
.
19.
Agarwal
,
O.
,
Wang
,
Z.
,
Kang
,
S. H.
,
Seppala
,
J. E.
,
Nguyen
,
T. D.
, and
Hemker
,
K. J.
, “Shape Effect in the Trouser Tear Test of a Single Weld Formed by FFF,” in preparation.
20.
Bayart
,
E.
,
Boudaoud
,
A.
, and
Adda-Bedia
,
M.
,
2010
, “
On the Tearing of Thin Sheets
,”
Eng. Fract. Mech.
,
77
(
11
), pp.
1849
1856
.
21.
Greensmith
,
H. W.
, and
Thomas
,
A. G.
,
1955
, “
Rupture of Rubber. III. Determination of Tear Properties
,”
J. Polym. Sci.
,
18
(
88
), pp.
189
200
.
22.
Sakulkaew
,
K.
,
Thomas
,
A.
, and
Busfield
,
J.
,
2011
, “
The Effect of the Rate of Strain on Tearing in Rubber
,”
Polym. Test.
,
30
(
2
), pp.
163
172
.
23.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(
26
), pp.
3455
3482
.
24.
Eyring
,
H.
,
1936
, “
Viscosity, Plasticity, and Diffusion As Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
,
4
(
4
), pp.
283
291
.
25.
Ree
,
T.
, and
Eyring
,
H.
,
1955
, “
Theory of Non-Newtonian Flow. I. Solid Plastic System
,”
J. Appl. Phys.
,
26
(
7
), pp.
793
800
.
26.
Wang
,
Z.
,
Guo
,
J.
,
Seppala
,
J. E.
, and
Nguyen
,
T. D.
,
2021
, “
Extending the Effective Temperature Model to the Large Strain Hardening Behavior of Glassy Polymers
,”
J. Mech. Phys. Solids
,
146
, p.
104175
.
27.
Xu
,
X.-P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.
28.
Isherwood
,
D.
, and
Williams
,
J.
,
1978
, “
Some Observations on the Tearing of Ductile Materials
,”
Eng. Fract. Mech.
,
10
(
4
), pp.
887
895
.
29.
Mai
,
Y. W.
, and
Cotterell
,
B.
,
1984
, “
The Essential Work of Fracture for Tearing of Ductile Metals
,”
Int. J. Fract.
,
24
(
3
), pp.
229
236
.
30.
Muscat-Fenech
,
C. M.
, and
Atkins
,
A. G.
,
1994
, “
Elastoplastic Trouser Tear Testing of Sheet Materials
,”
Int. J. Fract.
,
67
(
1
), pp.
69
80
.
You do not currently have access to this content.