Abstract

Geometrical imperfections are ubiquitous in load-bearing structures, including beams, columns, and shells. Fabrication processes of structural members most often create geometrical imperfections of random size and shape, which lead to non-deterministic load-carrying capacity. This study investigates the statistics of the buckling load of a beam with a random initial imperfection profile that rests on a nonlinear elastic foundation. The geometrical imperfection is represented by a zero-mean Gaussian random field, generated using the Karhunen–Loève expansion. The spatial distribution of the random imperfection is characterized by the probability distribution of the local imperfection magnitude and a spatial autocorrelation function. A finite-difference scheme is used to solve the governing equilibrium equation for a given initial imperfection profile, from which the buckling load is determined. Through a set of Monte Carlo simulations, the mean and variance of the buckling load are determined. The simulations reveal the influence of different length scales on the statistics of the buckling load, including the beam length and the autocorrelation length of the geometrical imperfection. The size effects predicted with the simplified model have implications for reliability-based structural design.

References

1.
Winkler
,
E.
,
1867
,
Die Lehre von der Elasticitaet und Festigkeit: mit Besonderer RüCksicht auf Ihre Anwendung in der Technik, für Polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc.
,
Dominicus
,
Prague
.
2.
Aregawi
,
W. A.
, and
Fok
,
A. S.
,
2021
, “
Shrinkage Stress and Cuspal Deflection in Mod Restorations: Analytical Solutions and Design Guidelines
,”
Dental Mater.
,
37
(
5
), pp.
783
795
.
3.
Lorenz
,
R.
,
1908
, “
Buckling of a Cylindrical Shell Under Axial Compression
,”
J. Zeitschrift des Vereines Deutscher Ingenieure
,
52
, pp.
1706
1713
.
4.
Timoshenko
,
S. P.
,
1910
, “
Einige StabilitäTsprobleme der Elastizita Tstheorie
,”
Zeitschrift für Mathematik und Physik
,
58
(
4
), pp.
337
385
.
5.
Cedolin
,
L.
, and
Bazant
,
Z.
,
1991
,
Stability of Structures
,
Oxford University Press
,
New York
, pp.
453
466
.
6.
Fraser
,
W. B.
, and
Budiansky
,
B.
,
1969
, “
The Buckling of a Column With Random Initial Deflections
,”
ASME J. Appl. Mech.
,
36
(
2
), pp.
233
240
.
7.
Amazigo
,
J. C.
,
Budiansky
,
B.
, and
Carrier
,
G. F.
,
1970
, “
Asymptotic Analyses of the Buckling of Imperfect Columns on Nonlinear Elastic Foundations
,”
Int. J. Solids Struct.
,
6
(
10
), pp.
1341
1356
.
8.
Amazigo
,
J. C.
,
1971
, “
Buckling of Stochastically Imperfect Columns on Nonlinear Elastic Foundations
,”
Q. Appl. Math.
,
29
(
3
), pp.
403
409
.
9.
Elishakoff
,
I.
,
Cai
,
G.
, and
Starnes
,
J.
, Jr.
,
1994
, “
Non-linear Buckling of a Column With Initial Imperfection via Stochastic and Non-stochastic Convex Models
,”
Int. J. Non Linear Mech.
,
29
(
1
), pp.
71
82
.
10.
Elishakoff
,
I.
,
2000
, “
Uncertain Buckling: Its Past, Present and Future
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
6869
6889
.
11.
Timoshenko
,
S.
, and
Gcre
,
J.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
12.
Vanmarcke
,
E.
,
2010
,
Random Fields: Analysis and Synthesis
,
World Scientific
,
Beijing
.
13.
Newland
,
D. E.
,
2012
,
An Introduction to Random Vibrations, Spectral & Wavelet Analysis
,
Courier Corporation
,
North Chelmsford
.
14.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
, pp.
17
24
.
15.
Langtangen
,
H. P.
, and
Mardal
,
K.-A.
,
2019
,
Introduction to Numerical Methods for Variational Problems
,
Springer International Publishing
,
Cham, Switzerland
.
16.
McClarren
,
R.
,
2017
,
Computational Nuclear Engineering and Radiological Science Using Python
,
Academic Press
,
New York
.
17.
LeVeque
,
R. J.
,
1998
, “Finite Difference Methods for Differential Equations,” Draft Version for Use in AMath, 585(6), p.
112
.
18.
Conejo
,
A. J.
, and
Baringo
,
L.
,
2018
,
Power System Operations
,
Springer
,
New York
.
19.
Mahadevan
,
S.
, and
Haldar
,
A.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
20.
Der Kiureghian
,
A.
,
2021
,
Structural and System Reliability
,
Cambridge University Press
,
Cambridge, UK
.
21.
Amazigo
,
J. C.
,
1969
, “
Buckling Under Axial Compression of Long Cylindrical Shells With Random Axisymmetric Imperfections
,”
Quarterly Appl. Math.
,
26
(
4
), pp.
537
566
.
22.
Lee
,
A.
,
López Jimménez
,
F.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
.
23.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148–149
, pp.
157
168
.
24.
Audoly
,
B.
, and
Hutchinson
,
J. W.
,
2020
, “
Localization in Spherical Shell Buckling
,”
J. Mech. Phys. Solids
,
136
, p.
103720
.
You do not currently have access to this content.