Abstract

Topology optimization is among the most effective tools for innovative and lightweight structural designs. Multi-material design is considered to achieve better structural performance than single-material design. To significantly reduce the design space dimensionality and facilitate the optimization of multi-material structural design problems, this study proposes an effective topological representation and dimensionality reduction approach based on the material-field series expansion (MFSE) model. In the proposed method, a specified number of material phases is described within a single material field with a piecewise Heaviside projection function. The topology optimization problem is solved by determining the optimal MFSE coefficients. Owing to the single material-field topological description and series expansion, the number of design variables is independent of the finite element mesh and the number of material phases. In terms of dimensionality reduction, the proposed method outperformed all reported state-of-the-art algorithms for multi-material topology optimization. The validity and universality of the proposed method are illustrated in two- and three-dimensional numerical examples.

References

1.
Chan
,
Y. C.
,
Shintani
,
K.
, and
Chen
,
W.
,
2019
, “
Robust Topology Optimization of Multi-material Lattice Structures Under Material and Load Uncertainties
,”
Front. Mech. Eng.
,
14
(
2
), pp.
141
152
.
2.
Boopathy
,
V. R.
,
Sriraman
,
A.
, and
Arumaikkannu
,
G.
,
2018
, “
Energy Absorbing Capability of Additive Manufactured Multi-material Honeycomb Structure
,”
Rapid Prototyp. J.
,
25
(
3
), pp.
623
629
.
3.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
.
4.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2002
, “
Three-Component Elastic Wave Band-Gap Material
,”
Phys. Rev. B
,
65
(
16
), p.
165116
.
5.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
6.
Thomsen
,
J.
,
1992
, “
Topology Optimization of Structures Composed of One or Two Materials
,”
Struct. Optim.
,
5
(
1
), pp.
108
115
.
7.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization–Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6605
6627
.
8.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3
), pp.
250
252
.
9.
Stegmann
,
J.
, and
Lund
,
E.
,
2005
, “
Discrete Material Optimization of General Composite Shell Structures
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
2009
2027
.
10.
Tavakoli
,
R.
, and
Mohseni
,
S. M.
,
2014
, “
Alternating Active-Phase Algorithm for Multimaterial Topology Optimization Problems: a 115-Line MATLAB Implementation
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
621
642
.
11.
Jung
,
D.
, and
Gea
,
H. C.
,
2006
, “
Design of an Energy-Absorbing Structure Using Topology Optimization With a Multimaterial Model
,”
Struct. Multidiscip. Optim.
,
32
(
3
), pp.
251
257
.
12.
Lund
,
E.
,
2009
, “
Buckling Topology Optimization of Laminated Multi-material Composite Shell Structures
,”
Compos. Struct.
,
91
(
2
), pp.
158
167
.
13.
Zhang
,
H.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2018
, “
Bi-material Microstructural Design of Chiral Auxetic Metamaterials Using Topology Optimization
,”
Compos. Struct.
,
195
, pp.
232
248
.
14.
Xu
,
S.
,
Liu
,
J.
,
Zou
,
B.
,
Li
,
Q.
, and
Ma
,
Y.
,
2020
, “
Stress Constrained Multi-material Topology Optimization With the Ordered SIMP Method
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113453
.
15.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “
‘Color’ Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
469
496
.
16.
Wang
,
Y.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1570
1586
.
17.
Liu
,
J.
, and
Ma
,
Y.
,
2018
, “
A New Multi-Material Level Set Topology Optimization Method With the Length Scale Control Capability
,”
Comput. Methods Appl. Mech. Eng.
,
329
, pp.
444
463
.
18.
Liu
,
P.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2016
, “
Multi-Material Topology Optimization Considering Interface Behavior via XFEM and Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
308
, pp.
113
133
.
19.
Liu
,
P.
,
Shi
,
L.
, and
Kang
,
Z.
,
2020
, “
Multi-Material Structural Topology Optimization Considering Material Interfacial Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112887
.
20.
Wang
,
Y.
, and
Kang
,
Z.
,
2018
, “
A Velocity Field Level Set Method for Shape and Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
115
(
11
), pp.
1315
1336
.
21.
Wallin
,
M.
,
Ivarsson
,
N.
, and
Ristinmaa
,
M.
,
2015
, “
Large Strain Phase-Field-Based Multi-Material Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
104
(
9
), pp.
887
904
.
22.
Blank
,
L.
,
Farshbaf-Shaker
,
M. H.
,
Garcke
,
H.
,
Rupprecht
,
C.
, and
Styles
,
V.
,
2014
, “
Multi-Material Phase Field Approach to Structural Topology Optimization
,”
Trends PDE Constrained Optim.
,
165
, pp.
231
246
.
23.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2014
, “
Topological Design of Microstructures of Multi-Phase Materials for Maximum Stiffness or Thermal Conductivity
,”
Comput. Mater. Sci.
,
91
, pp.
266
273
.
24.
Wang
,
Y.
,
Luo
,
Y.
, and
Yan
,
Y.
,
2022
, “
A Multi-material Topology Optimization Method Based on the Material-Field Series-Expansion Model
,”
Struct. Multidiscip. Optim.
,
65
(
1
), pp.
1
15
.
25.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
49
62
.
26.
Tai
,
X. C.
,
Christiansen
,
O.
,
Lin
,
P.
, and
Skjlaaen
,
I.
,
2007
, “
Image Segmentation Using Some Piecewise Constant Level Set Methods With MBO Type of Projection
,”
Int. J. Comput. Vis.
,
73
(
1
), pp.
61
76
.
27.
Luo
,
Z.
,
Tong
,
L.
,
Luo
,
J.
,
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Design of Piezoelectric Actuators Using a Multiphase Level Set Method of Piecewise Constants
,”
J. Comput. Phys.
,
228
(
7
), pp.
2643
2659
.
28.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-material Topology Optimization Using Ordered SIMP Interpolation
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
477
491
.
29.
Seong
,
H. K.
,
Kim
,
C. W.
,
Yoo
,
J.
, and
Lee
,
J.
,
2019
, “
Multi-phase Topology Optimization With a Single Variable Using the Phase Field Design Method
,”
Int. J. Numer. Methods Eng.
,
119
(
5
), pp.
334
360
.
30.
Luo
,
Y.
, and
Bao
,
J.
,
2019
, “
A Material-Field Series-Expansion Method for Topology Optimization of Continuum Structures
,”
Comput. Struct.
,
225
, p.
106122
.
31.
Sun
,
Z.
,
Liu
,
P.
, and
Luo
,
Y.
,
2022
, “
Anisotropic Material-Field Series Expansion for the Topological Design of Optical Metalens
,”
Opt. Express
,
30
(
10
), pp.
16459
16478
.
32.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes–A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
33.
Zhang
,
J.
, and
Ellingwood
,
B.
,
1994
, “
Orthogonal Series Expansions of Random Fields in First-Order Reliability Analysis
,”
J. Eng. Mech.
,
120
(
12
), pp.
2660
2677
.
34.
Luo
,
Y.
,
Zhan
,
J.
,
Xing
,
J.
, and
Kang
,
Z.
,
2019
, “
Non-probabilistic Uncertainty Quantification and Response Analysis of Structures With a Bounded Field Model
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
663
678
.
35.
Sanders
,
E.
,
Aguiló
,
M.
, and
Paulino
,
G.
,
2018
, “
Multi-material Continuum Topology Optimization With Arbitrary Volume and Mass Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
340
, pp.
798
823
.
36.
Sigmund
,
O.
,
2011
, “
On the Usefulness of Non-Gradient Approaches in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
589
596
.
37.
Luo
,
Y.
,
Xing
,
J.
, and
Kang
,
Z.
,
2020
, “
Topology Optimization Using Material-Field Series Expansion and Kriging-Based Algorithm: An Effective non-Gradient Method
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112966
.
38.
Luo
,
Y.
, and
Li
,
Y.
,
2022
, “
Tunable Band Gap Design of Soft Phononic Crystals Using Topology Optimization
,”
Adv. Theor. Simul.
,
5
(
7
), p.
2100620
.
39.
Zhang
,
X.
,
Xing
,
J.
,
Liu
,
P.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2021
, “
Realization of Full and Directional Band gap Design by Non-Gradient Topology Optimization in Acoustic Metamaterials
,”
Extreme Mech. Lett.
,
42
, p.
101126
.
40.
Liu
,
P.
,
Yan
,
Y.
,
Zhang
,
X.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2021
, “
Topological Design of Microstructures Using Periodic Material-Field Series-Expansion and Gradient-Free Optimization Algorithm
,”
Mater. Des.
,
199
, p.
109437
.
41.
Sun
,
Z.
,
Wang
,
Y.
,
Liu
,
P.
, and
Luo
,
Y.
,
2022
, “
Topological Dimensionality Reduction-Based Machine Learning for Efficient Gradient-Free 3D Topology Optimization
,”
Mater. Des.
,
220
, p.
110885
.
You do not currently have access to this content.