Abstract

Surface wrinkles have emerged as a promising avenue for the development of smart adhesives with dynamically tunable adhesion, finding applications in diverse fields, such as soft robots and medical devices. Despite intensive studies and great achievements, it is still challenging to model and simulate the tunable adhesion with surface wrinkles due to roughened surface topologies and pre-stress inside the materials. The lack of a mechanistic understanding hinders the rational design of these smart adhesives. Here, we integrate a lattice model for nonlinear deformations of solids and nonlocal interaction potentials for adhesion in the framework of molecular dynamics to explore the roles of surface wrinkles on adhesion behaviors. We validate the proposed model by comparing wrinkles in a neo-Hookean bilayer with benchmarked results and reproducing the analytical solution for cylindrical adhesion. We then systematically study the pull-off force of the wrinkled surface with varied compressive strains and adhesion energies. Our results reveal the competing effect between the adhesion-induced contact and the roughness due to wrinkles on enhancing or weakening the adhesion. Such understanding provides guidance for tailoring material and geometry as well as loading wrinkled surfaces for different applications.

References

1.
Arzt
,
E.
,
Quan
,
H.
,
McMeeking
,
R. M.
, and
Hensel
,
R.
,
2021
, “
Functional Surface Microstructures Inspired by Nature–From Adhesion and Wetting Principles to Sustainable New Devices
,”
Prog. Mater. Sci.
,
120
, p.
100823
.
2.
Croll
,
A. B.
,
Hosseini
,
N.
, and
Bartlett
,
M. D.
,
2019
, “
Switchable Adhesives for Multifunctional Interfaces
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900193
.
3.
Linghu
,
C.
,
Liu
,
Y.
,
Tan
,
Y. Y.
,
Sing
,
J. H. M.
,
Tang
,
Y.
,
Zhou
,
A.
,
Wang
,
X.
,
Li
,
D.
,
Gao
,
H.
, and
Hsia
,
K. J.
,
2023
, “
Overcoming the Adhesion Paradox and Switchability Conflict on Rough Surfaces With Shape-Memory Polymers
,”
Proc. Natl. Acad. Sci. U. S. A.
,
120
(
13
), p.
e2221049120
.
4.
Tatari
,
M.
,
Mohammadi Nasab
,
A.
,
Turner
,
K. T.
, and
Shan
,
W.
,
2018
, “
Dynamically Tunable Dry Adhesion via Subsurface Stiffness Modulation
,”
Adv. Mater. Interfaces
,
5
(
18
), p.
1800321
.
5.
Cho
,
H.
,
Wu
,
G.
,
Christopher Jolly
,
J.
,
Fortoul
,
N.
,
He
,
Z.
,
Gao
,
Y.
,
Jagota
,
A.
, and
Yang
,
S.
,
2019
, “
Intrinsically Reversible Superglues via Shape Adaptation Inspired by Snail Epiphragm
,”
Proc. Natl. Acad. Sci.
,
116
(
28
), pp.
13774
13779
.
6.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Santos
,
D.
, and
Cutkosky
,
M. R.
,
2008
, “
Smooth Vertical Surface Climbing With Directional Adhesion
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
65
74
.
7.
Tang
,
Y.
,
Zhang
,
Q.
,
Lin
,
G.
, and
Yin
,
J.
,
2018
, “
Switchable Adhesion Actuator for Amphibious Climbing Soft Robot
,”
Soft Rob.
,
5
(
5
), pp.
592
600
.
8.
Duan
,
W.
,
Yu
,
Z.
,
Cui
,
W.
,
Zhang
,
Z.
,
Zhang
,
W.
, and
Tian
,
Y.
,
2023
, “
Bio-Inspired Switchable Soft Adhesion for the Boost of Adhesive Surfaces and Robotics Applications: A Brief Review
,”
Adv. Colloid Interface Sci.
,
313
, p.
102862
.
9.
Meitl
,
M. A.
,
Zhu
,
Z.-T.
,
Kumar
,
V.
,
Lee
,
K. J.
,
Feng
,
X.
,
Huang
,
Y. Y.
,
Adesida
,
I.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2006
, “
Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
,”
Nat. Mater.
,
5
(
1
), pp.
33
38
.
10.
Zhang
,
X.
,
Wang
,
Y.
,
Tian
,
Z.
,
Samri
,
M.
,
Moh
,
K.
,
McMeeking
,
R. M.
,
Hensel
,
R.
, and
Arzt
,
E.
,
2022
, “
A Bioinspired Snap-Through Metastructure for Manipulating Micro-Objects
,”
Sci. Adv.
,
8
(
46
), p.
eadd4768
.
11.
Wan
,
G.
,
Tang
,
Y.
,
Turner
,
K. T.
,
Zhang
,
T.
, and
Shan
,
W.
,
2023
, “
Tunable Dry Adhesion of Soft Hollow Pillars Through Sidewall Buckling Under Low Pressure
,”
Adv. Funct. Mater.
,
33
(
2
), p.
2209905
.
12.
Bae
,
W.-G.
,
Kim
,
D.
, and
Suh
,
K.-Y.
,
2013
, “
Instantly Switchable Adhesion of Bridged Fibrillar Adhesive via Gecko-Inspired Detachment Mechanism and Its Application to a Transportation System
,”
Nanoscale
,
5
(
23
), pp.
11876
11884
.
13.
Chen
,
X.
,
Yuk
,
H.
,
Wu
,
J.
,
Nabzdyk
,
C. S.
, and
Zhao
,
X.
,
2020
, “
Instant Tough Bioadhesive With Triggerable Benign Detachment
,”
Proc. Natl. Acad. Sci.
,
117
(
27
), pp.
15497
15503
.
14.
Jinkins
,
K. R.
,
Li
,
S.
,
Arafa
,
H.
,
Jeong
,
H.
,
Lee
,
Y. J.
,
Wu
,
C.
,
Campisi
,
E.
, et al
,
2022
, “
Thermally Switchable, Crystallizable Oil and Silicone Composite Adhesives for Skin-Interfaced Wearable Devices
,”
Sci. Adv.
,
8
(
23
), pp.
eabo0537
.
15.
Chan
,
E. P.
,
Smith
,
E. J.
,
Hayward
,
R. C.
, and
Crosby
,
A. J.
,
2008
, “
Surface Wrinkles for Smart Adhesion
,”
Adv. Mater.
,
20
(
4
), pp.
711
716
.
16.
Lin
,
P.-C.
,
Vajpayee
,
S.
,
Jagota
,
A.
,
Hui
,
C.-Y.
, and
Yang
,
S.
,
2008
, “
Mechanically Tunable Dry Adhesive From Wrinkled Elastomers
,”
Soft Matter
,
4
(
9
), pp.
1830
1835
.
17.
Jeong
,
H. E.
,
Kwak
,
M. K.
, and
Suh
,
K. Y.
,
2010
, “
Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling
,”
Langmuir
,
26
(
4
), pp.
2223
2226
.
18.
Chan
,
E. P.
,
Karp
,
J. M.
, and
Langer
,
R. S.
,
2011
, “
A “Self-Pinning” Adhesive Based on Responsive Surface Wrinkles
,”
J. Polym. Sci., Part B: Polym. Phys.
,
49
(
1
), pp.
40
44
.
19.
Kundu
,
S.
,
Davis
,
C. S.
,
Long
,
T.
,
Sharma
,
R.
, and
Crosby
,
A. J.
,
2011
, “
Adhesion of Nonplanar Wrinkled Surfaces
,”
J. Polym. Sci., Part B: Polym. Phys.
,
49
(
3
), pp.
179
185
.
20.
Davis
,
C. S.
, and
Crosby
,
A. J.
,
2011
, “
Mechanics of Wrinkled Surface Adhesion
,”
Soft Matter
,
7
(
11
), pp.
5373
5381
.
21.
Davis
,
C. S.
,
Martina
,
D.
,
Creton
,
C.
,
Lindner
,
A.
, and
Crosby
,
A. J.
,
2012
, “
Enhanced Adhesion of Elastic Materials to Small-Scale Wrinkles
,”
Langmuir
,
28
(
42
), pp.
14899
14908
.
22.
Rahmawan
,
Y.
,
Chen
,
C.-M.
, and
Yang
,
S.
,
2014
, “
Recent Advances in Wrinkle-Based Dry Adhesion
,”
Soft Matter
,
10
(
28
), pp.
5028
5039
.
23.
Zhang
,
T.
,
Zhang
,
Z.
,
Kim
,
K.-S.
, and
Gao
,
H.
,
2014
, “
An Accordion Model Integrating Self-Cleaning, Strong Attachment and Easy Detachment Functionalities of Gecko Adhesion
,”
J. Adhes. Sci. Technol.
,
28
(
3–4
), pp.
226
239
.
24.
Wang
,
Y.
, and
Xiao
,
J.
,
2017
, “
Programmable, Reversible and Repeatable Wrinkling of Shape Memory Polymer Thin Films on Elastomeric Substrates for Smart Adhesion
,”
Soft Matter
,
13
(
31
), pp.
5317
5323
.
25.
Fuller
,
K.
, and
Tabor
,
D.
,
1975
, “
The Effect of Surface Roughness on the Adhesion of Elastic Solids
,”
Proc. R. Soc. A
,
345
(
1642
), pp.
327
342
.
26.
Maugis
,
D.
,
1996
, “
On the Contact and Adhesion of Rough Surfaces
,”
J. Adhes. Sci. Technol.
,
10
(
2
), pp.
161
175
.
27.
Hui
,
C.
,
Lin
,
Y.
,
Baney
,
J.
, and
Kramer
,
E.
,
2001
, “
The Mechanics of Contact and Adhesion of Periodically Rough Surfaces
,”
J. Polym. Sci., Part B: Polym. Phys.
,
39
(
11
), pp.
1195
1214
.
28.
Persson
,
B.
,
2002
, “
Adhesion Between an Elastic Body and a Randomly Rough Hard Surface
,”
Eur. Phys. J. E
,
8
(
4
), pp.
385
401
.
29.
Guduru
,
P.
,
2007
, “
Detachment of a Rigid Solid From an Elastic Wavy Surface: Theory
,”
J. Mech. Phys. Solids.
,
55
(
3
), pp.
445
472
.
30.
Pastewka
,
L.
, and
Robbins
,
M. O.
,
2014
, “
Contact Between Rough Surfaces and a Criterion for Macroscopic Adhesion
,”
Proc. Natl. Acad. Sci.
,
111
(
9
), pp.
3298
3303
.
31.
Guduru
,
P.
, and
Bull
,
C.
,
2007
, “
Detachment of a Rigid Solid From an Elastic Wavy Surface: Experiments
,”
J. Mech. Phys. Solids.
,
55
(
3
), pp.
473
488
.
32.
Jin
,
C.
,
Khare
,
K.
,
Vajpayee
,
S.
,
Yang
,
S.
,
Jagota
,
A.
, and
Hui
,
C.-Y.
,
2011
, “
Adhesive Contact Between a Rippled Elastic Surface and a Rigid Spherical Indenter: From Partial to Full Contact
,”
Soft Matter
,
7
(
22
), pp.
10728
10736
.
33.
Kesari
,
H.
, and
Lew
,
A. J.
,
2011
, “
Effective Macroscopic Adhesive Contact Behavior Induced by Small Surface Roughness
,”
J. Mech. Phys. Solids.
,
59
(
12
), pp.
2488
2510
.
34.
Jin
,
F.
,
Guo
,
X.
, and
Wan
,
Q.
,
2016
, “
Revisiting the Maugis–Dugdale Adhesion Model of Elastic Periodic Wavy Surfaces
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101007
.
35.
Li
,
Q.
, and
Kim
,
K. S.
,
2009
, “
Micromechanics of Rough Surface Adhesion: A Homogenized Projection Method
,”
Acta Mech. Solida Sin.
,
22
(
5
), pp.
377
390
.
36.
Deng
,
W.
, and
Kesari
,
H.
,
2019
, “
Depth-Dependent Hysteresis in Adhesive Elastic Contacts at Large Surface Roughness
,”
Sci. Rep.
,
9
(
1
), p.
1639
.
37.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2020
, “
A Numerical Study on Roughness-Induced Adhesion Enhancement in a Sphere With an Axisymmetric Sinusoidal Waviness Using Lennard–Jones Interaction Law
,”
Lubricants
,
8
(
9
), p.
90
.
38.
Zhu
,
Y.
,
Zheng
,
Z.
,
Zhang
,
Y.
,
Wu
,
H.
, and
Yu
,
J.
,
2021
, “
Adhesion of Elastic Wavy Surfaces: Interface Strengthening/Weakening and Mode Transition Mechanisms
,”
J. Mech. Phys. Solids.
,
151
, p.
104402
.
39.
Buxton
,
G. A.
, and
Balazs
,
A. C.
,
2002
, “
Lattice Spring Model of Filled Polymers and Nanocomposites
,”
J. Chem. Phys.
,
117
(
16
), pp.
7649
7658
.
40.
Yashin
,
V. V.
, and
Balazs
,
A. C.
,
2007
, “
Theoretical and Computational Modeling of Self-Oscillating Polymer Gels
,”
J. Chem. Phys.
,
126
(
12
), p.
124707
.
41.
Zhang
,
T.
,
2019
, “
Deriving a Lattice Model for Neo-Hookean Solids From Finite Element Methods
,”
Extreme Mech. Lett.
,
26
, pp.
40
45
.
42.
Ye
,
H.
,
Li
,
Y.
, and
Zhang
,
T.
,
2021
, “
Magttice: A Lattice Model for Hard-Magnetic Soft Materials
,”
Soft Matter
,
17
(
13
), pp.
3560
3568
.
43.
Liu
,
D.
,
Chen
,
C.
, and
Zhang
,
T.
,
2021
, “
Image-Based Polygonal Lattices for Mechanical Modeling of Biological Materials: 2D Demonstrations
,”
ACS Biomater. Sci. Eng.
44.
Gao
,
H.
, and
Yao
,
H.
,
2004
, “
Shape Insensitive Optimal Adhesion of Nanoscale Fibrillar Structures
,”
Proc. Natl. Acad. Sci.
,
101
(
21
), pp.
7851
7856
.
45.
Yao
,
H.
,
Guduru
,
P.
, and
Gao
,
H.
,
2008
, “
Maximum Strength for Intermolecular Adhesion of Nanospheres at an Optimal Size
,”
J. R. Soc. Interface
,
5
(
28
), pp.
1363
1370
.
46.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Academic Press
,
Burlington, MA
.
47.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
in't Veld
,
P. J.
, et al
,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, pp.
108171
.
48.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031019
.
49.
Brau
,
F.
,
Vandeparre
,
H.
,
Sabbah
,
A.
,
Poulard
,
C.
,
Boudaoud
,
A.
, and
Damman
,
P.
,
2011
, “
Multiple-Length-Scale Elastic Instability Mimics Parametric Resonance of Nonlinear Oscillators
,”
Nat. Phys.
,
7
(
1
), pp.
56
60
.
50.
Budday
,
S.
,
Kuhl
,
E.
, and
Hutchinson
,
J. W.
,
2015
, “
Period-Doubling and Period-Tripling in Growing Bilayered Systems
,”
Philos. Mag.
,
95
(
28–30
), pp.
3208
3224
.
51.
Zhao
,
R.
,
Zhang
,
T.
,
Diab
,
M.
,
Gao
,
H.
, and
Kim
,
K.-S.
,
2015
, “
The Primary Bilayer Ruga-Phase Diagram I: Localizations in Ruga Evolution
,”
Extreme Mech. Lett.
,
4
, pp.
76
82
.
52.
Barquins
,
M.
,
1988
, “
Adherence and Rolling Kinetics of a Rigid Cylinder in Contact With a Natural Rubber Surface
,”
J. Adhes.
,
26
(
1
), pp.
1
12
.
53.
Chaudhury
,
M. K.
,
Weaver
,
T.
,
Hui
,
C.
, and
Kramer
,
E.
,
1996
, “
Adhesive Contact of Cylindrical Lens and a Flat Sheet
,”
J. Appl. Phys.
,
80
(
1
), pp.
30
37
.
54.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
324
(
1558
), pp.
301
313
.
55.
Zhou
,
M.
,
2003
, “
A New Look at the Atomic Level Virial Stress: on Continuum-Molecular System Equivalence
,”
Proc. R. Soc. A
,
459
(
2037
), pp.
2347
2392
.
56.
Admal
,
N. C.
, and
Tadmor
,
E. B.
,
2010
, “
A Unified Interpretation of Stress in Molecular Systems
,”
J. Elast.
,
100
(
1–2
), pp.
63
143
.
57.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C.-Y.
,
Noderer
,
W. L.
, and
Chaudhury
,
M. K.
,
2007
, “
Biologically Inspired Crack Trapping for Enhanced Adhesion
,”
Proc. Natl. Acad. Sci.
,
104
(
26
), pp.
10786
10791
.
58.
Lin
,
G.
,
Chandrasekaran
,
P.
,
Lv
,
C.
,
Zhang
,
Q.
,
Tang
,
Y.
,
Han
,
L.
, and
Yin
,
J.
,
2017
, “
Self-similar Hierarchical Wrinkles as a Potential Multifunctional Smart Window With Simultaneously Tunable Transparency, Structural Color, and Droplet Transport
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26510
26517
.
59.
Chen
,
C.
,
Airoldi
,
C. A.
,
Lugo
,
C. A.
,
Bay
,
R. K.
,
Glover
,
B. J.
, and
Crosby
,
A. J.
,
2021
, “
Flower Inspiration: Broad-Angle Structural Color Through Tunable Hierarchical Wrinkles in Thin Film Multilayers
,”
Adv. Funct. Mater.
,
31
(
5
), p.
2006256
.
60.
Nagashima
,
S.
,
Suzuki
,
K.
,
Matsubara
,
S.
, and
Okumura
,
D.
,
2023
, “
Bio-Inspired Instability-Induced Hierarchical Patterns Having Tunable Anisotropic Wetting Properties
,”
Adv. Mater. Interfaces
,
10
(
14
), p.
2300039
.
61.
Bowden
,
N.
,
Brittain
,
S.
,
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Whitesides
,
G. M.
,
1998
, “
Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer
,”
Nature
,
393
(
6681
), pp.
146
149
.
62.
Genzer
,
J.
, and
Groenewold
,
J.
,
2006
, “
Soft Matter With Hard Skin: From Skin Wrinkles to Templating and Material Characterization
,”
Soft Matter
,
2
(
4
), pp.
310
323
.
63.
Cai
,
S.
,
Breid
,
D.
,
Crosby
,
A. J.
,
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
2011
, “
Periodic Patterns and Energy States of Buckled Films on Compliant Substrates
,”
J. Mech. Phys. Solids.
,
59
(
5
), pp.
1094
1114
.
64.
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.
65.
Yin
,
J.
,
Yagüe
,
J. L.
,
Eggenspieler
,
D.
,
Gleason
,
K. K.
, and
Boyce
,
M. C.
,
2012
, “
Deterministic Order in Surface Micro-Topologies Through Sequential Wrinkling
,”
Adv. Mater.
,
24
(
40
), pp.
5441
5446
.
66.
Wang
,
Q.
, and
Zhao
,
X.
,
2016
, “
Beyond Wrinkles: Multimodal Surface Instabilities for Multifunctional Patterning
,”
MRS Bull.
,
41
(
02
), pp.
115
122
.
67.
Yang
,
S.
,
Khare
,
K.
, and
Lin
,
P. C.
,
2010
, “
Harnessing Surface Wrinkle Patterns in Soft Matter
,”
Adv. Funct. Mater.
,
20
(
16
), pp.
2550
2564
.
68.
Ye
,
H.
,
Shen
,
Z.
,
Xian
,
W.
,
Zhang
,
T.
,
Tang
,
S.
, and
Li
,
Y.
,
2020
, “
OpenFSI: A Highly Efficient and Portable Fluid–Structure Simulation Package Based on Immersed-Boundary Method
,”
Comput. Phys. Commun.
,
256
, p.
107463
.
69.
Diab
,
M.
,
Zhang
,
T.
,
Zhao
,
R.
,
Gao
,
H.
, and
Kim
,
K.-S.
,
2013
, “
Ruga Mechanics of Creasing: From Instantaneous to Setback Creases
,”
Proc. R. Soc. A
,
469
, p.
20120753
.
70.
Zhao
,
R.
,
Diab
,
M.
, and
Kim
,
K.-S.
,
2016
, “
The Primary Bilayer Ruga-Phase Diagram ii: Irreversibility in Ruga Evolution
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
091004
.
71.
Hohlfeld
,
E.
, and
Mahadevan
,
L.
,
2011
, “
Unfolding the Sulcus
,”
Phys. Rev. Lett.
,
106
(
10
), p.
105702
.
72.
Hong
,
W.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Formation of Creases on the Surfaces of Elastomers and Gels
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111901
.
73.
Gent
,
A.
, and
Cho
,
I.
,
1999
, “
Surface Instabilities in Compressed or Bent Rubber Blocks
,”
Rubber Chem. Technol.
,
72
(
2
), pp.
253
262
.
74.
Sun
,
J.-Y.
,
Xia
,
S.
,
Moon
,
M.-W.
,
Oh
,
K. H.
, and
Kim
,
K.-S.
,
2012
, “
Folding Wrinkles of a Thin Stiff Layer on a Soft Substrate
,”
Proc. R. Soc. A
,
468
, pp.
932
953
.
75.
Brau
,
F.
,
Damman
,
P.
,
Diamant
,
H.
, and
Witten
,
T. A.
,
2013
, “
Wrinkle to Fold Transition: Influence of the Substrate Response
,”
Soft Matter
,
9
(
34
), pp.
8177
8186
.
76.
Zang
,
J.
,
Zhao
,
X.
,
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Localized Ridge Wrinkling of Stiff Films on Compliant Substrates
,”
J. Mech. Phys. Solids.
,
60
(
7
), pp.
1265
1279
.
You do not currently have access to this content.