Abstract

A previously proposed strain gradient plasticity theory is extended to incorporate a non-quadratic power law function of the plastic strain gradient in the free energy expression with an exponent of N + 1. The values of N are taken to vary from N = 1 to N = 0. A simple shear problem of a metal layer between rigid boundaries is analyzed. Two stages of plastic deformation are considered. In stage I, the plastic strain is taken to be zero at the boundaries. Stage I ends when a specified magnitude of the plastic strain gradient is attained at the boundaries. In stage II, the magnitude of the plastic strain gradient at the boundaries is fixed at the specified value. With N = 0, a critical plastic strain gradient cannot be specified at the boundaries because the plastic strain gradient is infinite at the boundaries. The theory with N = 0 predicts a constant plateau stress immediately after initial yield, and the dependence of the plateau stress on the layer thickness can fit experimentally observed plateau stress values. However, with N = 0, a stress gap occurs between the initial yield stress and the plateau stress. The theory with 0 < N ≤ 1 and with stage II also can reproduce the experimentally observed dependence of the plateau stress on the layer thickness for any value of N in that range, with an appropriate value of critical plastic strain gradient at the boundaries. The solution for 0 < N ≤ 1 includes that for N = 0 as a limiting case.

References

1.
Gudmundson
,
P.
,
2004
, “
Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1379
1406
.
2.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part I: Small Deformations
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1624
1649
.
3.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part II: Finite Deformations
,”
Int. J. Plast.
,
21
(
12
), pp.
2297
2318
.
4.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain Gradient Plasticity. Part 1: Scalar Plastic Multiplier
,”
J. Mech. Phys. Solids
,
57
(
1
), pp.
161
177
.
5.
Hua
,
F.
,
Liu
,
D.
,
Li
,
Y.
,
He
,
Y.
, and
Dunstan
,
D. J.
,
2021
, “
On Energetic and Dissipative Gradient Effects Within Higher-Order Strain Gradient Plasticity: Size Effect, Passivation Effect, and Bauschinger Effect
,”
Int. J. Plast.
,
141
, p.
102994
.
6.
Fleck
,
N. A.
,
Hutchinson
,
J. W.
, and
Willis
,
J. R.
,
2014
, “
Strain Gradient Plasticity Under Non-Proportional Loading
,”
Proc. R. Soc. A
,
470
(
2170
), p.
20140267
.
7.
Borg
,
U.
,
Niordson
,
C.
,
Fleck
,
N. A.
, and
Tvergaard
,
V.
,
2006
, “
A Viscoplastic Strain Gradient Analysis of Materials With Voids or Inclusions
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
4906
4916
.
8.
Fleck
,
N. A.
,
Hutchinson
,
J. W.
, and
Willis
,
J. R.
,
2015
, “
Guidelines for Constructing Strain Gradient Plasticity Theories
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071002
.
9.
Amouzou-Adoun
,
Y. A.
,
Jebahi
,
M.
,
Fivel
,
M.
,
Forest
,
S.
,
Lecomte
,
J.-S.
,
Schuman
,
C.
, and
Abed-Meraim
,
F.
,
2023
, “
On Elastic Gaps in Strain Gradient Plasticity: 3D Discrete Dislocation Dynamics Investigation
,”
Acta Mater.
,
252
, p.
118920
.
10.
Jebahi
,
M.
,
Cai
,
L.
, and
Abed-Meraim
,
F.
,
2020
, “
Strain Gradient Crystal Plasticity Model Based on Generalized Non-Quadratic Defect Energy and Uncoupled Dissipation
,”
Int. J. Plast.
,
126
, p.
102617
.
11.
Kuroda
,
M.
, and
Needleman
,
A.
,
2019
, “
A Simple Model for Size Effects in Constrained Shear
,”
Extreme Mech. Lett.
,
33
, p.
100581
.
12.
Kuroda
,
M.
,
Tvergaard
,
V.
, and
Needleman
,
A.
,
2021
, “
Constraint and Size Effects in Confined Layer Plasticity
,”
J. Mech. Phys. Solids
,
149
, p.
104328
.
13.
Kuroda
,
M.
,
2016
, “
A Strain-Gradient Plasticity Theory With a Corner-Like Effect: A Thermodynamics-Based Extension
,”
Int. J. Fract.
,
200
(
1–2
), pp.
115
125
.
14.
Mu
,
Y.
,
Zhang
,
X.
,
Hutchinson
,
J. W.
, and
Meng
,
W. J.
,
2016
, “
Dependence of Confined Plastic Flow of Polycrystalline Cu Thin Films on Microstructure
,”
MRS Commun.
,
6
(
3
), pp.
289
294
.
15.
Dahlberg
,
C. F. O.
, and
Ortiz
,
M.
,
2019
, “
Fractional Strain-Gradient Plasticity
,”
Eur. J. Mech. A Solids
,
75
, pp.
348
354
.
16.
Dahlberg
,
C. F. O.
, and
Ortiz
,
M.
,
2020
, “
Size Scaling of Plastic Deformation in Simple Shear: Fractional Strain-Gradient Plasticity and Boundary Effects in Conventional Strain-Gradient Plasticity
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
031017
.
17.
Arora
,
A.
,
Arora
,
R.
, and
Acharya
,
A.
,
2022
, “
Mechanics of Micropillar Confined Thin Film Plasticity
,”
Acta Mater.
,
238
, p.
118192
.
18.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.
19.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
20.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Alloys
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.
21.
Miyajima
,
Y.
,
Ueda
,
T.
,
Adachi
,
H.
,
Fujii
,
Y.
,
Onaka
,
S.
, and
Kato
,
M.
,
2014
, “
Dislocation Density of FCC Metals Processed by ARB
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
63
, p.
012138
.
22.
Abolghasem
,
S.
,
Basu
,
S.
,
Shekhar
,
S.
, and
Shankar
,
M. R.
,
2018
, “
Mapping Dislocation Densities Resulting From Severe Plastic Deformation Using Large Strain Machining
,”
J. Mater. Res.
,
33
(
22
), pp.
3762
3773
.
23.
Groma
,
I.
,
Csikor
,
F. F.
, and
Zaiser
,
M.
,
2003
, “
Spatial Correlations and Higher-Order Gradient Terms in a Continuum Description of Dislocation Dynamics
,”
Acta Mater.
,
51
(
5
), pp.
1271
1281
.
24.
Yefimov
,
S.
,
Groma
,
I.
, and
van der Giessen
,
E.
,
2004
, “
A Comparison of a Statistical-Mechanics Based Plasticity Model With Discrete Dislocation Plasticity Calculations
,”
J. Mech. Phys. Solids
,
52
(
2
), pp.
279
300
.
25.
Orowan
,
E.
,
1940
, “
Problems in Plastic Gliding
,”
Proc. Phys. Soc.
,
52
(
1
), pp.
8
22
.
You do not currently have access to this content.