Abstract

Additive manufacturing (AM) has emerged as a crucial technology in recent decades, particularly within the aerospace industry. However, the thermally cyclic nature of these processes introduces significant variations and defects in microstructure, which can adversely affect final part performance and hinder the widespread adoption of the technology. Traditionally, characterization of AM parts has relied on conventional bulk testing methods, which involve analyzing many samples to gather sufficient data for statistical analysis. Unfortunately, these methods are unable to account for local nanoscale variations in material properties caused by the microstructure, as they measure a single averaged property for each tested sample. In this work, we use AM Inconel 718 as a model system in developing a novel approach to correlate nanomechanical properties obtained through nanoindentation with microstructure obtained through electron backscatter diffraction (EBSD). By associating mechanical properties obtained from each indent with the corresponding crystallographic direction, we calculate the weighted average hardness and modulus for each orientation. This enables us to generate inverse pole figure maps depicting the relationship between mechanical properties and crystallographic direction. Our method yields results in good agreement with literature when calculating the part modulus and hardness, while effectively capturing nanoscale variations in properties across the microstructure. The key advantage of this methodology is its capability to rapidly test a single AM part and generate a large dataset for statistical analysis. Complementing existing macroscale characterization techniques, this method can help improve AM part performance prediction and contribute to the wider adoption of AM technologies in the future.

References

1.
Wang
,
H.
,
Dhiman
,
A.
,
Ostergaard
,
H. E.
,
Zhang
,
Y.
,
Siegmund
,
T.
,
Kruzic
,
J. J.
, and
Tomar
,
V.
,
2019
, “
Nanoindentation Based Properties of Inconel 718 at Elevated Temperatures: A Comparison of Conventional Versus Additively Manufactured Samples
,”
Int. J. Plast.
,
120
, pp.
380
394
.
2.
Zuback
,
J. S.
, and
DebRoy
,
T.
,
2018
, “
The Hardness of Additively Manufactured Alloys
,”
Materials
,
11
(
11
), p.
2070
.
3.
Salvati
,
E.
,
Lunt
,
A. J. G.
,
Heason
,
C. P.
,
Baxter
,
G. J.
, and
Korsunsky
,
A. M.
,
2020
, “
An Analysis of Fatigue Failure Mechanisms in an Additively Manufactured and Shot Peened IN 718 Nickel Superalloy
,”
Mater. Des.
,
191
, p.
108605
.
4.
Maity
,
T.
,
Chawake
,
N.
,
Kim
,
J. T.
,
Eckert
,
J.
, and
Prashanth
,
K. G.
,
2018
, “
Anisotropy in Local Microstructure—Does It Affect the Tensile Properties of the SLM Samples?
,”
Manuf. Lett.
,
15
, pp.
33
37
.
5.
Tepylo
,
N.
,
Huang
,
X.
, and
Patnaik
,
P. C.
,
2019
, “
Laser-Based Additive Manufacturing Technologies for Aerospace Applications
,”
Adv. Eng. Mater.
,
21
(
11
), p.
1900617
.
6.
Mohd Yusuf
,
S.
,
Cutler
,
S.
, and
Gao
,
N.
,
2019
, “
Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry
,”
Metals
,
9
(
12
), p.
1286
.
7.
Popovich
,
V. A.
,
Borisov
,
E. V.
,
Popovich
,
A. A.
,
Sufiiarov
,
V. S.
,
Masaylo
,
D. V.
, and
Alzina
,
L.
,
2017
, “
Functionally Graded Inconel 718 Processed by Additive Manufacturing: Crystallographic Texture, Anisotropy of Microstructure and Mechanical Properties
,”
Mater. Des.
,
114
, pp.
441
449
.
8.
Pereira
,
J. C.
,
Aranzabe
,
J.
,
Taboada
,
M. C.
,
Ruiz
,
N.
, and
Rodriguez
,
P. P.
,
2021
, “
Analysis of Microstructure and Mechanical Properties in As-Built/As-Cast and Heat-Treated Conditions for IN718 Alloy Obtained by Selective Laser Melting and Investment Casting Processes
,”
Crystals
,
11
(
10
), p.
1196
.
9.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.
10.
Palma
,
T.
,
Munther
,
M.
,
Sharma
,
M.
,
Hackel
,
L.
,
Beheshti
,
A.
, and
Davami
,
K.
,
2019
, “
Nanomechanical Characterization of Laser Peened Additively Manufactured Inconel 718 Superalloy
,”
Adv. Eng. Mater.
,
21
(
9
), p.
1900499
.
11.
Cazic
,
I.
,
Zollinger
,
J.
,
Mathieu
,
S.
,
El Kandaoui
,
M.
,
Plapper
,
P.
, and
Appolaire
,
B.
,
2021
, “
New Insights Into the Origin of Fine Equiaxed Microstructures in Additively Manufactured Inconel 718
,”
Scr. Mater.
,
195
, p.
113740
.
12.
Beese
,
A. M.
,
2018
, “Chapter 5—Microstructure and Mechanical Properties of AM Builds,”
Thermo-Mechanical Modeling of Additive Manufacturing
,
M.
Gouge
, and
P.
Michaleris
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
81
92
.
13.
Munther
,
M.
,
Palma
,
T.
,
Tavangarian
,
F.
,
Beheshti
,
A.
, and
Davami
,
K.
,
2020
, “
Nanomechanical Properties of Additively and Traditionally Manufactured Nickel-Chromium-Based Superalloys Through Instrumented Nanoindentation
,”
Manuf. Lett.
,
23
, pp.
39
43
.
14.
Glerum
,
J.
,
Bennett
,
J.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2021
, “
Mechanical Properties of Hybrid Additively Manufactured Inconel 718 Parts Created via Thermal Control After Secondary Treatment Processes
,”
J. Mater. Process. Technol.
,
291
, p.
117047
.
15.
Yang
,
T.
,
Mazumder
,
S.
,
Jin
,
Y.
,
Squires
,
B.
,
Sofield
,
M.
,
Pantawane
,
M. V.
,
Dahotre
,
N. B.
, and
Neogi
,
A.
,
2021
, “
A Review of Diagnostics Methodologies for Metal Additive Manufacturing Processes and Products
,”
Materials
,
14
(
17
), p.
4929
.
16.
Seifi
,
M.
,
Salem
,
A.
,
Beuth
,
J.
,
Harrysson
,
O.
, and
Lewandowski
,
J. J.
,
2016
, “
Overview of Materials Qualification Needs for Metal Additive Manufacturing
,”
JOM
,
68
(
3
), pp.
747
764
.
17.
Wang
,
X.
,
Keya
,
T.
, and
Chou
,
K.
,
2016
, “
Build Height Effect on the Inconel 718 Parts Fabricated by Selective Laser Melting
,”
Procedia Manuf.
,
5
, pp.
1006
1017
.
18.
Maamoun
,
A. H.
,
Xue
,
Y. F.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2018
, “
Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy
,”
Materials
,
11
(
12
), p.
2343
.
19.
Reiser
,
A.
,
Koch
,
L.
,
Dunn
,
K. A.
,
Matsuura
,
T.
,
Iwata
,
F.
,
Fogel
,
O.
,
Kotler
,
Z.
, et al
,
2020
, “
Metals by Micro-Scale Additive Manufacturing: Comparison of Microstructure and Mechanical Properties
,”
Adv. Funct. Mater.
,
30
(
28
), p.
1910491
.
20.
Voyiadjis
,
G. Z.
,
Abo Znemah
,
R.
,
Wood
,
P.
,
Gunputh
,
U.
, and
Zhang
,
C.
,
2021
, “
Effect of Element Wall Thickness on the Homogeneity and Isotropy of Hardness in SLM IN718 Using Nanoindentation
,”
Mech. Res. Commun.
,
114
, p.
103568
.
21.
Sadowski
,
M.
,
Ladani
,
L.
,
Brindley
,
W.
, and
Romano
,
J.
,
2016
, “
Optimizing Quality of Additively Manufactured Inconel 718 Using Powder Bed Laser Melting Process
,”
Addit. Manuf.
,
11
, pp.
60
70
.
22.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
.
23.
Strondl
,
A.
,
Milenkovic
,
S.
,
Schneider
,
A.
,
Klement
,
U.
, and
Frommeyer
,
G.
,
2012
, “
Effect of Processing on Microstructure and Physical Properties of Three Nickel-Based Superalloys with Different Hardening Mechanisms
,”
Adv. Eng. Mater.
,
14
(
7
), pp.
427
438
.
24.
Deng
,
D.
,
Moverare
,
J.
,
Peng
,
R. L.
, and
Söderberg
,
H.
,
2017
, “
Microstructure and Anisotropic Mechanical Properties of EBM Manufactured Inconel 718 and Effects of Post Heat Treatments
,”
Mater. Sci. Eng. A
,
693
, pp.
151
163
.
25.
Deng
,
D.
,
Peng
,
R. L.
,
Brodin
,
H.
, and
Moverare
,
J.
,
2018
, “
Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments
,”
Mater. Sci. Eng. A
,
713
, pp.
294
306
.
26.
Hintsala
,
E.
,
Risan
,
J.
,
Dietrich
,
R.
, and
Nay
,
R.
,
2017
, “
Correlated EBSD and High Speed Nanoindentation Mapping
,”
Microsc. Microanal.
,
23
(
S1
), pp.
780
781
.
27.
Orozco-Caballero
,
A.
,
Gutierrez
,
C.
,
Gan
,
B.
, and
Molina-Aldareguia
,
J. M.
,
2021
, “
High-Throughput Nanoindentation Mapping of Cast IN718 Nickel-Based Superalloys: Influence of the Nb Concentration
,”
J. Mater. Res.
,
36
(
11
), pp.
2213
2222
.
28.
Liu
,
Z.
,
Zhang
,
J.
,
He
,
B.
, and
Zou
,
Y.
,
2021
, “
High-Speed Nanoindentation Mapping of a Near-Alpha Titanium Alloy Made by Additive Manufacturing
,”
J. Mater. Res.
,
36
(
11
), pp.
2223
2234
.
29.
Chang
,
Y.
,
Lin
,
M.
,
Hangen
,
U.
,
Richter
,
S.
,
Haase
,
C.
, and
Bleck
,
W.
,
2021
, “
Revealing the Relation Between Microstructural Heterogeneities and Local Mechanical Properties of Complex-Phase Steel by Correlative Electron Microscopy and Nanoindentation Characterization
,”
Mater. Des.
,
203
, p.
109620
.
30.
Bhowmik
,
S.
,
McWilliams
,
B. A.
, and
Knezevic
,
M.
,
2022
, “
Effect of Powder Reuse on Tensile, Compressive, and Creep Strength of Inconel 718 Fabricated via Laser Powder Bed Fusion
,”
Mater. Charact.
,
190
, p.
112023
.
31.
Balachandramurthi
,
A. R.
,
Moverare
,
J.
,
Dixit
,
N.
, and
Pederson
,
R.
,
2018
, “
Influence of Defects and as-Built Surface Roughness on Fatigue Properties of Additively Manufactured Alloy 718
,”
Mater. Sci. Eng. A
,
735
, pp.
463
474
.
32.
Hosseini
,
E.
, and
Popovich
,
V. A.
,
2019
, “
A Review of Mechanical Properties of Additively Manufactured Inconel 718
,”
Addit. Manuf.
,
30
, p.
100877
.
33.
Jeyaprakash
,
N.
,
Yang
,
C.-H.
, and
Ramkumar
,
K. R.
,
2021
, “
Microstructural, Mechanical and Wear Behaviour of Inconel-718 Produced Through Laser-Powder Bed-Fused Additive Manufacturing
,”
Mater. Sci. Technol.
,
37
(
3
), pp.
326
337
.
34.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
35.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3–
20
.
36.
Special Metals Corporation
,
2007
, “
Inconel Alloy 718
,” https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf.
37.
Popovich
,
V. A.
,
Borisov
,
E. V.
,
Popovich
,
A. A.
,
Sufiiarov
,
V. S.
,
Masaylo
,
D. V.
, and
Alzina
,
L.
,
2017
, “
Impact of Heat Treatment on Mechanical Behaviour of Inconel 718 Processed With Tailored Microstructure by Selective Laser Melting
,”
Mater. Des.
,
131
, pp.
12
22
.
38.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
39.
Sudharshan Phani
,
P.
, and
Oliver
,
W. C.
,
2019
, “
A Critical Assessment of the Effect of Indentation Spacing on the Measurement of Hardness and Modulus Using Instrumented Indentation Testing
,”
Mater. Des.
,
164
, p.
107563
.
40.
Ahlfors
,
M.
,
2019
, “
High Pressure Heat Treatment of AM Parts–Combining HIP and Heat Treatment
,”
Proceedings of the 30th ASM Heat Treating Society Conference
,
Detroit, MI
,
Oct. 15–17
, pp.
11
17
.
41.
Kumara
,
C.
,
Deng
,
D.
,
Moverare
,
J.
, and
Nylén
,
P.
,
2018
, “
Modelling of Anisotropic Elastic Properties in Alloy 718 Built by Electron Beam Melting
,”
Mater. Sci. Technol.
,
34
(
5
), pp.
529
537
.
You do not currently have access to this content.