Abstract

Deformation and fracture of metallic glasses are often modeled by stress-based criteria which often incorporate some sorts of pressure dependence. However, detailed mechanisms that are responsible for the shear-band formation and the entire damage initiation and evolution process are complex and the origin of such a pressure dependence is obscure. Here, we argue that the shear-band formation results from the constitutive instability, so that the shear-band angle and arrangements can be easily related to the macroscopic constitutive parameters such as internal friction and dilatancy factor. This is one reason for the observed tension-compression asymmetry in metallic glasses. The free volume coalescence leads to precipitous formation of voids or cavities inside the shear bands, and the intrinsic “ductility” is therefore governed by the growth of these cavities. Based on a generalized Stokes–Hookean analogy, we can derive the critical shear-band failure strain with respect to the applied stress triaxiality, in which the cavity evolution scenarios are sharply different between tension-controlled and shear/compression-dominated conditions. This is another possible reason for the tension-compression asymmetry. It is noted that diffusive-controlled cavity growth could also be the rate-determining process, as suggested by the recent measurements of shear-band diffusivity and viscosity that turn out to satisfy the Stokes–Einstein relationship. This constitutes the third possible reason for the tension-compression asymmetry.

References

1.
Sun
,
B. A.
, and
Wang
,
W. H.
,
2015
, “
The Fracture of Bulk Metallic Glasses
,”
Prog. Mater. Sci.
,
74
, pp.
211
307
.
2.
Jia
,
H. L.
,
Wang
,
G. Y.
,
Chen
,
S. Y.
,
Gao
,
Y. F.
,
Li
,
W. D.
, and
Liaw
,
P. K.
,
2018
, “
Fatigue and Fracture Behavior of Bulk Metallic Glasses and Their Composites
,”
Prog. Mater. Sci.
,
98
, pp.
168
248
.
3.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1975
, “
Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
371
394
.
4.
Gao
,
Y. F.
,
Wang
,
L.
,
Bei
,
H.
, and
Nieh
,
T. G.
,
2011
, “
On the Shear-Band Direction in Metallic Glasses
,”
Acta Mater.
,
59
(
10
), pp.
4159
4167
.
5.
Li
,
J.
,
Spaepen
,
F.
, and
Hufnagel
,
T. C.
,
2002
, “
Nanometre-Scale Defects in Shear Bands in a Metallic Glass
,”
Philos. Mag.
,
82
(
13
), pp.
2623
2630
.
6.
Wright
,
W. J.
,
Hufnagel
,
T. C.
, and
Nix
,
W. D.
,
2003
, “
Free Volume Coalescence and Void Formation in Shear Bands in Metallic Glass
,”
J. Appl. Phys.
,
93
(
3
), pp.
1432
1437
.
7.
Lu
,
J.
,
Ravichandran
,
G.
, and
Johnson
,
W. L.
,
2003
, “
Deformation Behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass Over a Wide Range of Strain-Rates and Temperatures
,”
Acta Mater.
,
51
(
12
), pp.
3429
3443
.
8.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A Solids
,
27
(
1
), pp.
1
17
.
9.
Tvergaard
,
V.
, and
Nielsen
,
K. L.
,
2010
, “
Relations Between a Micro-Mechanical Model and a Damage Model for Ductile Failure in Shear
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1243
1252
.
10.
Cui
,
Y.
,
Gao
,
Y. F.
, and
Chew
,
H. B.
,
2020
, “
Two-Scale Porosity Effects on Cohesive Crack Growth in a Ductile Media
,”
Int. J. Solids Struct.
,
200−201
, pp.
188
197
.
11.
Barnwal
,
V. K.
,
Lee
,
S.-Y.
,
Choi
,
J.
,
Kim
,
J.-H.
, and
Barlat
,
F.
,
2021
, “
Performance Review of Various Uncoupled Fracture Criteria for TRIP Steel Sheet
,”
Int. J. Mech. Sci.
,
195
, p.
106269
.
12.
Jiang
,
M. Q.
,
Ling
,
Z.
,
Meng
,
J. X.
, and
Dai
,
L. H.
,
2008
, “
Energy Dissipation in Fracture of Bulk Metallic Glasses Via Inherent Competition Between Local Softening and Quasi-Cleavage
,”
Philos. Mag.
,
88
(
3
), pp.
407
426
.
13.
Huang
,
X.
,
Ling
,
Z.
, and
Dai
,
L. H.
,
2013
, “
Cavitation Instabilities in Bulk Metallic Glasses
,”
Int. J. Solids Struct.
,
50
(
9
), pp.
1364
1372
.
14.
Qu
,
R. T.
,
Wang
,
S. G.
,
Wang
,
X. D.
,
Liu
,
Z. Q.
, and
Zhang
,
Z. F.
,
2017
, “
Revealing the Shear Band Cracking Mechanism in Metallic Glass by X-ray Tomography
,”
Scr. Mater.
,
133
, pp.
24
28
.
15.
Needleman
,
A.
, and
Rice
,
J. R.
,
1980
, “
Plastic Creep Flow Effects in the Diffusive Cavitation of Grain Boundaries
,”
Acta Metall.
,
28
(
10
), pp.
1315
1332
.
16.
Sham
,
T.-L.
, and
Needleman
,
A.
,
1983
, “
Effects of Triaxial Stressing on Creep Cavitation of Grain Boundaries
,”
Acta Metall.
,
31
(
6
), pp.
919
926
.
17.
Zhang
,
W.
,
Wang
,
X.
,
Wang
,
Y.
,
Yu
,
X.
,
Gao
,
Y.
, and
Feng
,
Z.
,
2020
, “
Type IV Failure in Weldment of Creep Resistant Ferritic Alloys: I. Micromechanical Origin of Creep Strain Localization in the Heat Affected Zone
,”
J. Mech. Phys. Solids
,
134
, p.
103774
.
18.
Zhang
,
W.
,
Wang
,
X.
,
Wang
,
Y.
,
Yu
,
X.
,
Gao
,
Y.
, and
Feng
,
Z.
,
2020
, “
Type IV Failure in Weldment of Creep Resistant Ferritic Alloys: II. Creep Fracture and Lifetime Prediction
,”
J. Mech. Phys. Solids
,
134
, p.
103775
.
19.
Zhang
,
W.
,
Gao
,
Y. F.
,
Feng
,
Z. L.
,
Wang
,
X.
,
Zhang
,
S.
,
Huang
,
L.
,
Huang
,
Z. W.
, and
Jiang
,
L.
,
2020
, “
Ductility Limit Diagrams for Superplasticity and Forging of High Temperature Polycrystalline Materials
,”
Acta Mater.
,
194
, pp.
378
386
.
20.
McClintock
,
F. A.
,
Kaplan
,
S. M.
, and
Berg
,
C. A.
,
1966
, “
Ductile Fracture by Hole Growth in Shear Band
,”
Int. J. Fracture Mech.
,
2
(
4
), pp.
614
627
.
21.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
22.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1986
, “
Void Growth in Shear
,”
Proc. R. Soc. Lond. A
,
407
(
1833
), pp.
435
458
.
23.
Fleck
,
N. A.
,
Hutchinson
,
J. W.
, and
Tvergaard
,
V.
,
1989
, “
Softening by Void Nucleation and Growth in Tension and Shear
,”
J. Mech. Phys. Solids
,
37
(
4
), pp.
515
540
.
24.
Anderson
,
P. M.
,
Fleck
,
N. A.
, and
Johnson
,
K. L.
,
1990
, “
Localization of Plastic Deformation in Shear Due to Microcracks
,”
J. Mech. Phys. Solids
,
38
(
5
), pp.
681
699
.
25.
Bower
,
A. F.
,
Fleck
,
N. A.
,
Needleman
,
A.
, and
Ogbonna
,
N.
,
1993
, “
Indentation of a Power Law Creeping Solid
,”
Proc. R. Soc. Lond. Ser., A: Math. Phys. Sci.
,
441
(
1911
), pp.
97
124
.
26.
Hull
,
D.
, and
Rimmer
,
D. E.
,
1959
, “
The Growth of Grain-Boundary Voids Under Stress
,”
Philos. Mag.
,
4
(
42
), pp.
673
687
.
27.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1982
, “
On Creep Fracture by Void Growth
,”
Prog. Mater. Sci.
,
27
(
3–4
), pp.
189
244
.
28.
Bokeloh
,
J.
,
Divinski
,
S. V.
,
Reglitz
,
G.
, and
Wilde
,
G.
,
2011
, “
Tracer Measurements of Atomic Diffusion Inside Shear Bands of a Bulk Metallic Glass
,”
Phys. Rev. Lett.
,
107
(
23
), p.
235503
.
29.
Song
,
S. X.
, and
Nieh
,
T. G.
,
2009
, “
Flow Serration and Shear-Band Viscosity During Inhomogeneous Deformation of a Zr-Based Bulk Metallic Glass
,”
Intermetallics
,
17
(
9
), pp.
762
767
.
30.
Wright
,
W. J.
,
Samale
,
M. W.
,
Hufnagel
,
T. C.
,
LeBlanc
,
M. M.
, and
Florando
,
J. N.
,
2009
, “
Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of a Bulk Metallic Glass
,”
Acta Mater.
,
57
(
16
), pp.
4639
4648
.
31.
Wang
,
X.
,
Gao
,
Y.
,
McDonnell
,
M.
, and
Feng
,
Z.
,
2022
, “
Determination of the Friction Stir Welding Window From the Solid-State-Bonding Mechanics Under Severe Thermomechanical Conditions
,”
Materialia
,
21
, p.
101350
.
You do not currently have access to this content.