Abstract

The present paper studies the critical condition for negative surface tension-driven circumferential wrinkling of soft cylinders based on the linearized Steigmann–Ogden model of surface elasticity. A simple negative surface tension-mode number relation is derived explicitly for arbitrary Poisson ratios of the cylinder and its surface layer and their shear modulus ratio, on which the critical surface residual strain and the associated mode number can be determined easily. For an incompressible solid cylinder with an incompressible thin surface layer, the critical values of surface residual strain and the mode number predicted by the present model are in good agreement with available numerical results based on the popular neo-Hooken nonlinear model for a wide range of material and geometrical parameters. In addition, the critical condition for circumferential wrinkling of the inner surface of a cylindrical hole within an infinite body is also derived. The present work addresses the key role of negative surface tension in circumferential wrinkling of soft cylinders and offers supporting evidence for the efficiency and accuracy of the linear Steigmann–Ogden model for the determination of the critical values for circumferential wrinkling.

References

1.
Mora
,
S.
,
Phou
,
T.
,
Fromental
,
J. M.
,
Pismen
,
L. M.
, and
Pomeau
,
Y.
,
2010
, “
Capillarity Driven Instability of a Soft Solid
,”
Phys. Rev. Lett.
,
105
(
21
), p.
3
.
2.
Xuan
,
C.
, and
Biggins
,
J.
,
2016
, “
Finite-Wavelength Surface-Tension-Driven Instabilities in Soft Solids, Including Instability in a Cylindrical Channel Through an Elastic Solid
,”
Phys. Rev. E
,
94
(
2
), p.
023107
.
3.
Fu
,
Y. B.
,
Jin
,
L.
, and
Goriely
,
A.
,
2021
, “
Necking, Beading, and Bulging in Soft Elastic Cylinders
,”
J. Mech. Phys. Solids
,
147
, p.
104250
.
4.
Tamim
,
S. I.
, and
Bostwick
,
J. B.
,
2021
, “
Plateau-Rayleigh Instability in an Soft Viscoelastic Material
,”
Soft Matter
,
17
(
15
), pp.
4170
4179
.
5.
Yang
,
G.
,
Gao
,
C. F.
, and
Ru
,
C. Q.
,
2022
, “
Surface Tension-Driven Instability of a Soft Elastic Rod Revisted
,”
Int. J. Solids Struct.
,
241
, p.
111491
.
6.
Wang
,
L.
,
2020
, “
Axisymmetric Instability of Soft Elastic Tubes Under Axial Load and Surface Tension
,”
Int. J. Solids Struct.
,
191–192
, pp.
341
350
.
7.
Emery
,
D.
, and
Fu
,
Y. B.
,
2021
, “
Localized Bifurcation in Soft Cylindrical Tubes Under Axial Stretching and Surface Tension
,”
Int. J. Solids Struct.
,
219–220
, pp.
23
33
.
8.
Sultan
,
E.
, and
Boudaoud
,
A.
,
2008
, “
The Buckling of a Swollen Thin GRL Layer Bound on a Compliant Substrate
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051002
.
9.
Dervaux
,
J.
,
Couder
,
Y.
,
Guedeau-Boudeville
,
M. A.
, and
Amar
,
M. B.
,
2011
, “
Shape Transition in Artificial Tumors: From Smooth Buckles to Singular Creases
,”
Phy. Rev. Let.
,
107
(
1
), p.
018103
.
10.
Li
,
B.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2011
, “
Surface Wrinkling of Mucosa Induced by Volumetric Growth: Theory, Simulation and Experiment
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
758
774
.
11.
Cao
,
Y. P.
,
Li
,
B.
, and
Feng
,
X. Q.
,
2012
, “
Surface Wrinkling and Folding of Core-Shell Soft Cylinders
,”
Soft Matter
,
8
(
2
), pp.
556
562
.
12.
Balbi
,
V.
,
Destrade
,
M.
, and
Goriely
,
A.
,
2020
, “
Mechanics of Human Brain Organoids
,”
Phy. Rev. E
,
101
, p.
022403
.
13.
Thijssen
,
K.
,
Kusters
,
G. L.
, and
Doostmohammadi
,
A.
,
2021
, “
Activity-Induced Instability of Brain Organoids
,”
Euro. Phy. J. E
,
44
(
12
), p.
147
.
14.
Emuna
,
N.
, and
Cohen
,
N.
,
2020
, “
Circumferential Instabilities in Radially Incompatible Tubes
,”
Mech. Mater.
,
147
, p.
103458
.
15.
Liu
,
R. C.
,
Jin
,
L.
,
Cai
,
Z.
, and
Liu
,
Y.
,
2022
, “
An Experimental Study of Morphological Formation in Bilayered Tubular Structures Driven by Swelling Growth
,”
Math. Mech. Solids
,
27
(
8
), pp.
1569
1591
.
16.
Kusters
,
R.
,
Simon
,
C.
,
Dos Santos
,
R. L.
,
Caorsi
,
V.
,
Wu
,
S.
,
Joanny
,
J. F.
,
Sens
,
P.
, and
Sykes
,
C.
,
2019
, “
Actin Shells Control Buckling and Wrinkling of Biomembranes
,”
Soft Matter
,
15
(
47
), pp.
9647
9653
.
17.
Binysh
,
J.
,
Wilks
,
T. R.
, and
Souslov
,
A.
,
2022
, “
Active Elastocapillarity in Soft Solids With Negative Surface Tension
,”
Sci. Adv.
,
8
(
10
), p.
eabk3079
.
18.
Mathur
,
A.
,
Sharma
,
P.
, and
Cammarata
,
R. C.
,
2005
, “
Negative Surface Energy
,”
Nat. Mater.
,
4
(
3
), p.
186
.
19.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plane Deformation of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. London A
,
453
(
1959
), pp.
853
877
.
20.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface-Substrate Interaction
,”
Proc. R. Soc. London A
,
455
(
1982
), pp.
437
474
.
21.
Fried
,
E.
, and
Todres
,
R. E.
,
2005
, “
Mind the gap: the Shape of the Free Surface of a Rubber-Like Material in Proximity to a Rigid Contactor
,”
J. Elasticity
,
80
(
1–3
), pp.
97
151
.
22.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
.
23.
Mogilevskaya
,
S. G.
,
Kushch
,
V. I.
, and
Zemlyanova
,
A. Y.
,
2019
, “
Displacements Representations for the Problems with Spherical and Circular Material Surfaces
,”
Q. J. Mech. Appl. Math.
,
72
(
4
), pp.
449
471
.
24.
Mogilevskaya
,
S. G.
,
Zemlyanova
,
A. Y.
, and
Kushch
,
V. I.
,
2021
, “
Fiber- and Particle-Reinforced Composites With the Gurtin-Murdoch and Steigmann-Ogden Surface Energy Endowed Interfaces
,”
ASME Appl. Mech. Rev.
,
73
(
5
), p.
050801
.
25.
Mi
,
C.
,
2018
, “
Elastic Behavior of a Half-Space With a Steigmann-Ogden Boundary Under Nanoscale Frictionless Patch Loads
,”
Int. J. Engng. Sci.
,
129
, pp.
129
144
.
26.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
27.
Murdoch
,
A. I.
,
1978
, “
On Wrinkling Induced by Surface Stress at the Boundary of an Infinite Circular Cylinder
,”
Int. J. Eng. Sci.
,
16
(
2
), pp.
131
137
.
28.
Ti
,
F.
,
Chen
,
X.
,
Li
,
M.
,
Sun
,
X.
,
Liu
,
S.
, and
Lu
,
T. J.
,
2022
, “
Cylindrical Compressible Liquid Inclusion With Surface Effects
,”
J. Mech. Phys. Solids
,
161
, p.
104813
.
29.
Ru
,
C. Q.
,
2022
, “
On Critical Value for Surface Tension-Driven Instability of a Soft Composite Cylinder
,”
Mech. Res. Commun.
,
124
, p.
103959
.
You do not currently have access to this content.