Abstract

The effects of membrane load on the axisymmetric bistable behavior of circular curved micro plates are studied via an axisymmetric reduced order (RO) model, incorporating radial prestress. The model is based on Kirchhoff’s hypothesis and Föppl-von-Kármán’s kinematics. The model is first validated for a “mechanical” (displacement-independent) load, against an RO model with 20 degrees-of-freedom (DOF), a finite differences (FD) solution, and finally, a finite elements (FE) model, serving as the reference. All solutions implement the “Riks” continuation method to track unstable branches, which can swerve in a complex form due to the presence of higher buckling modes. A convergence study is carried out for the snap-through location and load, as well as for the critical elevation and prestress required for bistability. Based on the validated results of the mechanical analysis, the reliability of the model for predicting the effect of prestress on the plate behavior under nonlinear (displacement-dependent) electrostatic load is then investigated while using FD as the reference. The study furnishes an expended RO model for curved plates, which includes the effect of prestress. The resulting model can further be used to estimate the value of residual membrane load present in electrostatically actuated curved plates, as well as predict the threshold for bistability.

References

1.
Lyakhov
,
G.
,
Proskuryakov
,
A.
,
Shipilov
,
K.
, and
Umnova
,
O.
,
1995
, “
Bistability and Chaos in Acoustic Resonators
,”
Ultrasonics
,
33
(
1
), pp.
55
59
.
2.
Akkas
,
N.
, and
Odeh
,
G.
,
2001
, “
A Novel Snap-Through Buckling Behavior of Axisymmetric Shallow Shells With Possible Application in Transducer Design
,”
Comput. Struct.
,
79
, pp.
2579
2585
.
3.
Harne
,
R.
, and
Wang
,
K.
,
2014
, “
A Bifurcation-Based Coupled Linear-Bistable System for Microscale Mass Sensing
,”
J. Sound. Vib.
,
333
(
8
), pp.
2241
2252
.
4.
Intaraprasonk
,
V.
, and
Fan
,
S.
,
2011
, “
Nonvolatile Bistable All-Optical Switch From Mechanical Buckling
,”
Appl. Phys. Lett.
,
98
(
24
), p.
241104
.
5.
Crunteanu
,
A.
,
Bouyge
,
D.
,
Sabourdy
,
D.
,
Blondy
,
P.
,
Couderc
,
V.
,
Grossard
,
L.
,
Pioger
,
P.
, and
Barthélémy
,
A.
,
2006
, “
Deformable Micro-Electro-Mechanical Mirror Integration in a Fibre Laser Q-Switch System
,”
J. Opt. A: Pure. Appl. Opt.
,
8
(
7
), p.
S347
.
6.
Uno
,
A.
,
Hirai
,
Y.
,
Tsuchiya
,
T.
, and
Tabata
,
O.
,
2016
, “
Mems Deformable Mirror Actuated by Electrostatic Piston Array
,”
2016 International Conference on Optical MEMS and Nanophotonics
,
Singapore
,
July 31
, IEEE, pp.
1
2
.
7.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045005
.
8.
Davidovikj
,
D.
,
Bouwmeester
,
D.
,
van der Zant
,
H. S.
, and
Steeneken
,
P. G.
,
2018
, “
Graphene Gas Pumps
,”
2D. Mater.
,
5
(
3
), p.
031009
.
9.
Krylov
,
S.
,
Ilic
,
B.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
,
2008
, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055026
.
10.
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-In Instability in MEMS/NEMS: A Review
,”
Sens. Actuators., A.
,
214
(
1
), pp.
187
218
.
11.
Bunch
,
J. S.
,
Verbridge
,
S. S.
,
Alden
,
J. S.
,
Van Der Zande
,
A. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2008
, “
Impermeable Atomic Membranes From Graphene Sheets
,”
Nano. Lett.
,
8
(
8
), pp.
2458
2462
.
12.
Sajadi
,
B.
,
Goosen
,
H.
, and
van Keulen
,
F.
,
2018
, “
Electrostatic Instability of Micro-plates Subjected to Differential Pressure: A Semi-Analytical Approach
,”
Int. J. Mech. Sci.
,
138
(
1
), pp.
210
218
.
13.
Saif
,
M. T. A.
,
2000
, “
On a Tunable Bistable MEMS-Theory and Experiment
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
157
170
.
14.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non-Linear Mech.
,
45
(
7
), pp.
704
713
.
15.
Das
,
K.
, and
Batra
,
R. C.
,
2009
, “
Symmetry Breaking, Snap-Through and Pull-In Instabilities Under Dynamic Loading of Microelectromechanical Shallow Arches
,”
Smart Mater. Struct.
,
18
(
11
), p.
115008
.
16.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2014
, “
Symmetry Breaking in an Initially Curved Pre-Stressed Micro Beam Loaded by a Distributed Electrostatic Force
,”
Int. J. Solids. Struct.
,
51
(
11
), pp.
2047
2061
.
17.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2013
, “
An Efficient Reduced-Order Model to Investigate the Behavior of an Imperfect Microbeam Under Axial Load and Electric Excitation
,”
ASME J. Comput. Nonlinear. Dyn.
,
8
(
1
), p.
011014
.
18.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
Statics and Dynamics of Mems Arches Under Axial Forces
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021007
.
19.
Medina
,
L.
,
Gilat
,
R.
,
Ilic
,
B.
, and
Krylov
,
S.
,
2014
, “
Experimental Investigation of the Snap-Through Buckling of Electrostatically Actuated Initially Curved Pre-Stressed Micro Beams
,”
Sens. Actuators., A.
,
220
(
1
), pp.
323
332
.
20.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2016
, “
Latching in Bistable Electrostatically Actuated Curved Micro Beams
,”
Int. J. Eng. Sci.
,
110
(
1
), pp.
15
34
.
21.
Nistor
,
M.
,
Wiebe
,
R.
, and
Stanciulescu
,
I.
,
2017
, “
Relationship Between Euler Buckling and Unstable Equilibria of Buckled Beams
,”
Int. J. Non-Linear Mech.
,
95
(
1
), pp.
151
161
.
22.
Pelesko
,
J.
, and
Chen
,
X.
,
2003
, “
Electrostatic Deflections of Circular Elastic Membranes
,”
J. Electrost.
,
57
(
1
), pp.
1
12
.
23.
Zhao
,
X.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2004
, “
A Reduced-Order Model for Electrically Actuated Microplates
,”
J. Micromech. Microeng.
,
14
(
7
), p.
900
.
24.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2005
, “
Reduced-Order Models for Mems Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
211
236
.
25.
Saghir
,
S.
, and
Younis
,
M. I.
,
2016
, “
An Investigation of the Static and Dynamic Behavior of Electrically Actuated Rectangular Microplates
,”
Int. J. Non-Linear Mech.
,
85
(
1
), pp.
81
93
.
26.
Vogl
,
G. W.
, and
Nayfeh
,
A. H.
,
2005
, “
A Reduced-Order Model for Electrically Actuated Clamped Circular Plates
,”
J. Micromech. Microeng.
,
15
(
4
), p.
684
.
27.
Batra
,
R.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Reduced-Order Models for Microelectromechanical Rectangular and Circular Plates Incorporating the Casimir Force
,”
Int. J. Solids. Struct.
,
45
(
11
), pp.
3558
3583
.
28.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Effects of Van Der Waals Force and Thermal Stresses on Pull-In Instability of Clamped Rectangular Microplates
,”
Sensors
,
8
(
2
), pp.
1048
1069
.
29.
Wang
,
Y.-G.
,
Lin
,
W.-H.
,
Li
,
X.-M.
, and
Feng
,
Z.-J.
,
2011
, “
Bending and Vibration of An Electrostatically Actuated Circular Microplate in Presence of Casimir Force
,”
Appl. Math. Model.
,
35
(
5
), pp.
2348
2357
.
30.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2016
, “
Bistable Behavior of Electrostatically Actuated Initially Curved Micro Plate
,”
Sens. Actuators., A.
,
248
(
1
), pp.
193
198
.
31.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
,
2016
, “
Internal Energy Transfer in Dynamical Behavior of Slightly Curved Shear Deformable Microplates
,”
ASME J. Comput. Nonlinear. Dyn.
,
11
(
4
), p.
041002
.
32.
Jallouli
,
A.
,
Kacem
,
N.
,
Bourbon
,
G.
,
Le Moal
,
P.
,
Walter
,
V.
, and
Lardies
,
J.
,
2016
, “
Pull-in Instability Tuning in Imperfect Nonlinear Circular Microplates Under Electrostatic Actuation
,”
Phys. Lett. A.
,
380
(
46
), pp.
3886
3890
.
33.
Seffen
,
K.
, and
Vidoli
,
S.
,
2016
, “
Eversion of Bistable Shells Under Magnetic Actuation: a Model of Nonlinear Shapes
,”
Smart Mater. Struct.
,
25
(
6
), p.
065010
.
34.
Askari
,
A. R.
,
2019
, “
Bi-Stability of Pressurized Electrically Actuated Flat Micro-Plates
,”
Int. J. Solids. Struct.
,
178
(
1
), pp.
167
179
.
35.
Walker
,
M. G.
, and
Seffen
,
K. A.
,
2018
, “
On the Shape of Bistable Creased Strips
,”
Thin-Walled Struct.
,
124
(
1
), pp.
538
545
.
36.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2017
, “
Modeling Strategies of Electrostatically Actuated Initially Curved Bistable Micro Plates
,”
Int. J. Solids. Struct.
,
118
(
1
), pp.
1
13
.
37.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2018
, “
Bistability Criterion for Electrostatically Actuated Initially Curved Micro Plates
,”
Int. J. Eng. Sci.
,
130
(
1
), pp.
75
92
.
38.
Sobota
,
P.
, and
Seffen
,
K. A.
,
2017
, “
Effects of Boundary Conditions on Bistable Behaviour in Axisymmetrical Shallow Shells
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2203
), p.
20170230
.
39.
Madou
,
M. J.
,
2002
,
Fundamentals of Microfabrication: The Science of Miniaturization
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp.
1
752
.
40.
Aksyuk
,
V. A.
,
Simon
,
M. E.
,
Pardo
,
F.
,
Arney
,
S.
,
Lopez
,
D.
, and
Villanueva
,
A.
,
2002
, “
Optical MEMS Design for Telecommunications Applications
,”
Solid-State Sensor, Actuator and Microsystems Workshop
,
Hilton Head Island, SC
,
June 2
, pp.
1
6
.
41.
Kebadze
,
E.
,
Guest
,
S.
, and
Pellegrino
,
S.
,
2004
, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids. Struct.
,
41
(
11
), pp.
2801
2820
.
42.
Saghir
,
S.
,
Bellaredj
,
M.
,
Ramini
,
A.
, and
Younis
,
M.
,
2016
, “
Initially Curved Microplates Under Electrostatic Actuation: Theory and Experiment
,”
J. Micromech. Microeng.
,
26
(
9
), p.
095004
.
43.
Faris
,
W.
, and
Nayfeh
,
A. H.
,
2007
, “
Mechanical Response of a Capacitive Microsensor Under Thermal Load
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
5
), pp.
776
783
.
44.
Kosel
,
F.
,
Jakomin
,
M.
,
Batista
,
M.
, and
Kosel
,
T.
,
2006
, “
Snap-Through of the System of Open Shallow Axi-Symmetric Bimetallic Shell by Non-Linear Theory
,”
Thin-Walled Struct.
,
44
(
2
), pp.
170
183
.
45.
Ebrahimi
,
F.
, and
Hosseini
,
S. H. S.
,
2020
, “
Nonlinear Dynamics and Stability of Viscoelastic Nanoplates Considering Residual Surface Stress and Surface Elasticity Effects: A Parametric Excitation Analysis
,”
Eng. Comput.
,
37
(
3
), pp.
1
14
.
46.
Behera
,
A. R.
,
Shaik
,
H.
,
Rao
,
G. M.
, and
Pratap
,
R.
,
2019
, “
A Technique for Estimation of Residual Stress and Young’s Modulus of Compressively Stressed Thin Films Using Microfabricated Beams
,”
J. Microelectromech. Syst.
,
28
(
6
), pp.
1039
1054
.
47.
Asher
,
A.
,
Benjamin
,
E.
,
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2020
, “
Bistable Micro Caps Fabricated by Sheet Metal Forming
,”
J. Micromech. Microeng.
,
30
(
6
), p.
065002
.
48.
Medina
,
L.
,
Eliasi
,
R.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2021
, “
The Effect of Membrane Load on the Usage of Bergers Model in Electrostatically Actuated Pre-Stressed Circular Curved Micro Plates
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Nov. 17
, Vol. 85482, p. V011T11A008.
49.
Reddy
,
J.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
, 2nd ed.,
Taylor & Francis
,
Boca Raton, FL
, pp.
149
211
.
50.
Sokolov
,
I.
,
Krylov
,
S.
, and
Harari
,
I.
,
2012
, “
Electromechanical Analysis of Micro-Beams Based on Planar Finite-deformation Theory
,”
Finite Elem. Anal. Des.
,
49
(
1
), pp.
28
34
.
51.
Dassault Systémes
,
2013
, Abaqus 6.13 Online Documentation. http://130.149.89.49:2080/v6.13/index.html, March.
52.
Crisfield
,
M.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure That Handles Snap-Through
,”
Comput. Struct.
,
13
(
1
), pp.
55
62
.
53.
Bonet
,
J.
, and
Wood
,
R.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
, 2nd ed.,
Cambridge University Press
,
Cambridge
, pp.
261
264
.
You do not currently have access to this content.