Abstract

The analysis of thermoelastic wave propagation in continuum solids at micro/nano-seconds is especially significant for ultra-fast heating technologies, where strain relaxation effects will increase significantly. In most cases, it is commonly accompanied by a relatively small strain-rate; however, this is questionable in the environment of transient thermal wave propagation under the ultra-fast heating case. The present work is dedicated to constitutive modeling of a novel generalized thermoelasticity model by introducing an additional strain-rate term associated with a relaxation time parameter in the Lord–Shulman (LS) thermoelasticity with the aid of an extended thermodynamics framework. As an application, the newly developed model is applied to a one-dimensional half-space problem which is traction free at one end; a time-dependent thermal shock is imposed at the same end to analyze transient responses of thermodynamic field variables (temperature, displacement, strain, and stress). The inclusion of strain-rate in the LS model eliminates the probable propagating jump discontinuities of the strain and stress fields at the wavefront. The current work is expected to be useful in the mathematical modeling and numerical simulation of thermoelastic processes under an ultra-fast heating environment.

References

1.
Dafermos
,
C. M.
,
2016
,
Hyperbolic Conservation Laws in Continuum Physics
, Fourth ed.,
Springer-Verlag
,
Berlin/Heidelberg
.
2.
Duhamel
,
J. M. C.
,
1837
, “
Second Mémoire Sur Les Phénomènes Thermo-Mécaniques
,”
J. de l’École Polytechnique
,
15
(
25
), pp.
1
57
.
3.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.
4.
Chester
,
M.
,
1963
, “
Second Sound in Solids
,”
Phys. Rev. J. Arch.
,
131
(
5
), pp.
2013
2015
.
5.
Ackerman
,
C. C.
,
Bertman
,
B.
,
Fairbank
,
H. A.
, and
Guyer
,
R. A.
,
1966
, “
Second Sound in Solid Helium
,”
Phys. Rev. Lett.
,
16
(
18
), pp.
789
791
.
6.
Cattaneo
,
C.
,
1948–1949
, “
Sulla Conduzione Del Calore
,”
Atti Semin. Mat. Fis. della Università di Modena
,
3
(
3
), pp.
83
101
.
7.
Lord
,
H. W.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.
8.
Dhaliwal
,
R.
, and
Sherief
,
H.
,
1980
, “
Generalized Thermoelasticity for Anisotropic Media
,”
Q. Appl. Math.
,
38
(
1
), pp.
1
8
.
9.
Ignaczak
,
J.
,
1979
, “
Uniqueness in Generalized Thermoelasticity
,”
J. Therm. Stresses
,
2
(
2
), pp.
171
175
.
10.
Ignaczak
,
J.
,
1982
, “
A Note on Uniqueness in Thermoelasticity With One Relaxation Time
,”
J. Therm. Stresses
,
5
(
3–4
), pp.
257
263
.
11.
Dhaliwal
,
R.
, and
Sherief
,
H.
,
1980
, “
A Uniqueness Theorem and a Variational Principle for Generalized Thermoelasticity
,”
J. Therm. Stresses
,
3
(
2
), pp.
223-230
263
.
12.
Sherief
,
H.
,
1987
, “
On Uniqueness and Stability in Generalized Thermoelasticity
,”
Quart. Appl. Math
,
44
(
4
), pp.
773
778
.
13.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elast.
,
2
(
1
), pp.
1
7
.
14.
Green
,
A. E.
, and
Naghdi
,
P.
,
1991
, “
A Re-examination of the Basic Postulates of Thermomechanics
,”
Proc. R. Soc. Lond. A
,
432
(
1885
), pp.
171
194
.
15.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1992
, “
On Undamped Heat Waves in an Elastic Solid
,”
J. Therm. Stresses
,
15
(
2
), pp.
253
264
.
16.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elast.
,
31
(
3
), pp.
189
208
.
17.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.
18.
Choudhuri
,
S. K. R.
,
2007
, “
On a Thermoelastic Three-Phase-Lag Model
,”
J. Therm. Stresses
,
30
(
3
), pp.
231
238
.
19.
Shaw
,
S.
,
2020
, “
A Thermodynamic Analysis of an Enhanced Theory of Heat Conduction Model: Extended Influence of Finite Strain and Heat Flux
,”
Int. J. Eng. Sci.
,
152
, p.
103277
.
20.
Chsandrasekharaiah
,
D. S.
,
1998
, “
Hyperbolic Thermoelasticity: A Review of Recent Literature
,”
Appl. Mech. Rev.
,
51
(
12
), pp.
705
729
.
21.
Shakeriaski
,
F.
,
Ghodrat
,
M.
,
Escobedo-Diaz
,
J.
, and
Behnia
,
M.
,
2021
, “
Recent Advances in Generalized Thermoelasticity Theory and the Modified Models: A Review
,”
J. Comput. Des. Eng.
,
8
(
1
), pp.
15
35
.
22.
Yu
,
Y. J.
,
Xue
,
Z. -N.
, and
Tian
,
X. -G.
,
2018
, “
A Modified Green–Lindsay Thermoelasticity With Strain Rate to Eliminate the Discontinuity
,”
Meccanica
,
53
(
10
), pp.
2543
2554
.
23.
Li
,
C.
,
Guo
,
H.
,
He
,
T.
, and
Tian
,
X.
,
2022
, “
A Rate-Dependent Constitutive Model of Piezoelectric Thermoelasticity and Structural Thermo-Electromechanical Responses Analysis to Multilayered Laminated Piezoelectric Smart Composites
,”
Appl. Math. Modell.
,
112
, pp.
18
46
.
24.
Shakeriaski
,
F.
,
Ghodrat
,
M.
,
Escobedo-Diaz
,
J.
, and
Behnia
,
M.
,
2021
, “
Modified Green–Lindsay Thermoelasticity Wave Propagation in Elastic Materials Under Thermal Shock
,”
J. Comput. Des. Eng.
,
8
(
1
), pp.
36
54
.
25.
Quintanilla
,
R.
,
2018
, “
Some Qualitative Results for a Modification of the Green–Lindsay Thermoelasticity
,”
Meccanica
,
53
(
14
), pp.
3607
3613
.
26.
Alihemmati
,
J
, and
Beni
,
Y. T.
,
2022
, “
Generalized Thermoelasticity of Microstructures: Lord–Shulman Theory With Modified Strain Gradient Theory
,”
Mech. Mater.
,
172
, p.
104412
.
27.
Norwood
,
F. R.
, and
Warren
,
W. E.
,
1969
, “
Wave Propagation in the Generalized Dynamical Theory of Thermoelasticity
,”
Q. J. Mech. Appl. Math.
,
22
(
3
), pp.
283
290
.
28.
Popov
,
E. B.
,
1967
, “
Dynamic Coupled Problem of Thermoelasticity for a Half-Space Taking Account of the Finiteness of the Heat Propagation Velocity
,”
J. Appl. Math. Mech.
,
31
(
2
), pp.
349
356
.
29.
Dhaliwal
,
R. S.
, and
Rokne
,
J. G.
,
1988
, “
One-Dimensional Generalized Thermoelastic Problem for a Half Space
,”
J. Therm. Stresses
,
11
(
3
), pp.
257
271
.
30.
Chandrasekharaiah
,
D.
,
1980
, “
On Generalised Thermoelastic Wave Propagation
,”
Proc. Ind. Acad. Sci. – Math. Sci.
,
89
(
1
), pp.
43
52
.
31.
Sherief
,
H. H.
, and
Saleh
,
H. A.
,
2005
, “
A Half-Space Problem in the Theory of Generalized Thermoelastic Diffusion
,”
Int. J. Solids Struct.
,
42
(
15
), pp.
4484
4493
.
32.
Sherief
,
H. H.
, and
Dhaliwal
,
R. S.
,
1981
, “
Generalized One-Dimensional Thermal-Shock Problem for Small Times
,”
J. Therm. Stresses
,
4
(
3–4
), pp.
407
420
.
33.
Sarkar
,
N.
,
2013
, “
On the Discontinuity Solution of the Lord–Shulman Model in Generalized Thermoelasticity
,”
Appl. Math. Comput.
,
219
(
20
), pp.
10245
10252
.
34.
El-Karamany
,
A. S.
, and
Ezzat
,
M. A.
,
2005
, “
Propagation of Discontinuities in Thermopiezoelectric Rod
,”
J. Therm. Stresses
,
28
(
10
), pp.
997
1030
.
35.
Chandrasekharaiah
,
D. S.
, and
Debnath
,
L.
,
1994
,
Continuum Mechanics
,
Elsevier Inc., Academic Press
,
San Diego, CA
.
36.
Green
,
A. E.
, and
Laws
,
N.
,
1972
, “
On the Entropy Production Inequality
,”
Arch. Rat. Mech. Anal.
,
45
(
1
), pp.
17
53
.
37.
Nowacki
,
W.
, and
Sneddon
,
I. N.
,
1977
,
Thermomechanics in Solids
,
Springer-Verlag Wien
,
New York
.
38.
Ignaczak
,
J.
, and
Ostoja-Starzewski
,
M.
,
2010
,
Thermoelasticity With Finite Wave Speeds
,
Oxford University Press
,
New York
.
39.
Danilovskaya
,
V. I.
,
1950
, “
Thermal Stresses in an Elastic Half-space Due to Sudden Heating of Its Boundary
,”
Prikl. Math. Mech.
,
14
, pp.
316
324
.
40.
Danilovskaya
,
V. I.
,
1952
, “
On a Dynamical Problem of Thermoelasticity
,”
Prikl. Math. Mech.
,
16
(
3
), p.
341
.
41.
Jordan
,
P. M.
, and
Puri
,
P.
,
2006
, “
Revisiting the Danilovskaya Problem
,”
J. Therm. Stresses
,
29
(
9
), pp.
865
878
.
42.
Honig
,
G.
, and
Hirdes
,
U.
,
1984
, “
A Method for the Numerical Inversion of Laplace Transforms
,”
J. Comput. Appl. Math.
,
10
(
1
), pp.
113
132
.
43.
Tzou
,
D. Y.
,
1996
,
Macro to Micro Heat Transfer
,
Taylor and Francis
,
Washington, DC
.
You do not currently have access to this content.