Abstract

Due to the negative correlation between pressure resistance and waterborne sound insulation, low-impedance soundproof materials can hardly work in deep water. Here, we propose a new mechanism to circumvent this problem by employing a sandwich panel with designed dynamics quasi-zero-stiffness (QZS) truss cores. The latticed cores are made of programable curved beams, whose shape is carefully designed to meet the demand of both high-pressure resistance and dynamics QZS. An analytical model is developed to evaluate sound transmission of such panel. It is shown that the low-frequency sound insulation performance of the customized panel increases with the hydrostatic pressure and reaches its maximum when the QZS state is triggered. The effective pressure range of the proposed sandwich panel can be further programed by stacking QZS beam lattices of different static load plateaus. The proposed design strategy stems solely from the structural geometry of the curved beams and is therefore materials-insensitive. The linear/inverse relationships between static loading feature and characteristic mechanical properties/geometrical parameters, and the stacking arrangement of lattice bring out the programability of the panel’s bearing capacity. The design strategy, together with the established database, provides a feasible approach for underwater sound insulation of equipment subjected to elevated pressures.

References

1.
Georgiadis
,
S.
,
Gunnion
,
A. J.
,
Thomson
,
R. S.
, and
Cartwright
,
B. K.
,
2008
, “
Bird-Strike Simulation for Certification of the Boeing 787 Composite Moveable Trailing Edge
,”
Compos. Struct.
,
86
(
1–3
), pp.
258
268
.
2.
Mead
,
D.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
3.
Shen
,
C.
,
Xin
,
F.
,
Cheng
,
L.
, and
Lu
,
T.
,
2013
, “
Sound Radiation of Orthogonally Stiffened Laminated Composite Plates Under Airborne and Structure Borne Excitations
,”
Compos. Sci. Technol.
,
84
, pp.
51
57
.
4.
Petrone
,
G.
,
D’Alessandro
,
V.
,
Franco
,
F.
, and
De Rosa
,
S.
,
2014
, “
Numerical and Experimental Investigations on the Acoustic Power Radiated by Aluminium Foam Sandwich Panels
,”
Compos. Struct.
,
118
, pp.
170
177
.
5.
Talebitooti
,
R.
, and
Zarastvand
,
M.
,
2018
, “
The Effect of Nature of Porous Material on Diffuse Fifield Acoustic Transmission of the Sandwich Aerospace Composite Doubly Curved Shell
,”
Aerosp. Sci. Technol.
,
78
, pp.
157
170
.
6.
Yin
,
X.
,
Gu
,
X.
,
Cui
,
H.
, and
Shen
,
R.
,
2007
, “
Acoustic Radiation From a Laminated Composite Plate Reinforced by Doubly Periodic Parallel Stiffeners
,”
J. Sound Vib.
,
306
(
3–5
), pp.
877
889
.
7.
Sorokin
,
S. V.
,
2000
, “
Vibrations of and Sound Radiation From Sandwich Plates in Heavy Fluid Loading Conditions
,”
Compos. Struct.
,
48
(
4
), pp.
219
230
.
8.
Hongisto
,
V.
,
2000
, “
Sound Insulation of Doors—Part 1: Prediction Models for Structural and Leak Transmission
,”
J. Sound Vib.
,
230
(
1
), pp.
133
148
.
9.
Hongisto
,
V.
,
2001
, “
A Case Study of Flanking Transmission Through Double Structures
,”
Appl. Acoust.
,
62
(
5
), pp.
589
599
.
10.
Wang
,
D.-W.
,
Ma
,
L.
,
Wen
,
Z.-H.
, and
Glorieux
,
C.
,
2021
, “
Sound Transmission Loss of a Two-Layered Pyramidal Structure Lined With Porous Material
,”
AIAA J.
,
59
(
7
), pp.
2714
2724
.
11.
He
,
Z.-H.
,
Wang
,
Y.-Z.
, and
Wang
,
Y.-S.
,
2019
, “
Active Feedback Control on Sound Radiation of Elastic Wave Metamaterials
,”
AIAA J.
,
57
(
10
), pp.
4536
4547
.
12.
Shen
,
C.
,
Xin
,
F.
, and
Lu
,
T.
,
2016
, “
Sound Transmission Across Composite Laminate Sandwiches: Influence of Orthogonal Stiffeners and Laminate Layup
,”
Compos. Struct.
,
143
, pp.
310
316
.
13.
Wu
,
H.
,
Hao
,
C.
, and
Zhang
,
H.
,
2020
, “
Underwater Broadband Sound Insulation With Chiral Spiral Structures
,”
AIP Adv.
,
10
(
12
), p.
125022
.
14.
Duan
,
M.
,
Yu
,
C.
,
Xin
,
F.
, and
Lu
,
T. J.
,
2021
, “
Tunable Underwater Acoustic Metamaterials Via Quasi-Helmholtz Resonance: From Low-Frequency to Ultra-Broadband
,”
Appl. Phys. Lett.
,
118
(
7
), p.
071904
.
15.
Chen
,
Y.
,
Zhao
,
B.
,
Liu
,
X.
, and
Hu
,
G.
,
2020
, “
Highly Anisotropic Hexagonal Lattice Material for Low Frequency Water Sound Insulation
,”
Extreme Mech. Lett.
,
40
, p.
100916
.
16.
Panigrahi
,
S.
,
Jog
,
C.
, and
Munjal
,
M.
,
2008
, “
Multi-focus Design of Underwater Noise Control Linings Based on Finite Element Analysis
,”
Appl. Acoust.
,
69
(
12
), pp.
1141
1153
.
17.
Meng
,
H.
,
Wen
,
J.
,
Zhao
,
H.
,
Lv
,
L.
, and
Wen
,
X.
,
2012
, “
Analysis of Absorption Performances of Anechoic Layers With Steel Plate Backing
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
69
75
.
18.
Cai
,
Z.
,
Zhao
,
S.
,
Huang
,
Z.
,
Li
,
Z.
,
Su
,
M.
,
Zhang
,
Z.
,
Zhao
,
Z.
,
Hu
,
X.
,
Wang
,
Y.-S.
, and
Song
,
Y.
,
2019
, “
Bubble Architectures for Locally Resonant Acoustic Metamaterials
,”
Adv. Funct. Mater.
,
29
(
51
), p.
1906984
.
19.
Tong
,
L.
,
Xiong
,
Z.
,
Shen
,
Y.-X.
,
Peng
,
Y.-G.
,
Huang
,
X.-Y.
,
Ye
,
L.
,
Tang
,
M.
, et al
,
2020
, “
An Acoustic Meta-Skin Insulator
,”
Adv. Mater.
,
32
(
37
), p.
2002251
.
20.
Huang
,
L.
,
Xiao
,
Y.
,
Wen
,
J.
,
Zhang
,
H.
, and
Wen
,
X.
,
2018
, “
Optimization of Decoupling Performance of Underwater Acoustic Coating With Cavities Via Equivalent Fluid Model
,”
J. Sound Vib.
,
426
, pp.
244
257
.
21.
Liu
,
H.
,
Zhang
,
Q.
,
Zhang
,
K.
,
Hu
,
G.
, and
Duan
,
H.
,
2019
, “
Designing 3D Digital Metamaterial for Elastic Waves: From Elastic Wave Polarizer to Vibration Control
,”
Adv. Sci.
,
6
(
16
), p.
1900401
.
22.
Wen
,
Z.
,
Jin
,
Y.
,
Gao
,
P.
,
Zhuang
,
X.
,
Rabczuk
,
T.
, and
Djafari-Rouhani
,
B.
,
2022
, “
Topological Cavities in Phonic Plates for Robust Energy Harvesting
,”
Mech. Syst. Signal Pr.
,
162
, p.
108047
.
23.
Wang
,
Z.
,
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
,
2016
, “
Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency
,”
Adv. Mater.
,
28
(
44
), pp.
9857
9861
.
24.
Chen
,
Y.
,
Zhang
,
Q.
,
Zhang
,
Y.
,
Xia
,
B.
,
Liu
,
X.
,
Zhou
,
X.
,
Chen
,
C.
, and
Hu
,
G.
,
2021
, “
Research Progress of Elastic Topological Materials
,”
Adv. Mech.
,
51
(
2
), pp.
189
256
.
25.
Yin
,
J.
,
Cai
,
L.
,
Fang
,
X.
,
Xiao
,
Y.
,
Yang
,
H.
,
Zhang
,
H.
,
Zhong
,
J.
,
Zhao
,
H.
,
Yu
,
D.
, and
Wen
,
J.
,
2022
, “
Review on Research Progress of Mechanical Metamaterials and Their Applications on Vibration and Noise Control
,”
Adv. Mech.
,
52
, pp.
1
79
.
26.
Xiao
,
Y.
, and
Wen
,
J.
,
2020
, “
Closed-Form Formulas for Bandgap Estimation and Design of Metastructures Undergoing Longitudinal or Torsional Vibration
,”
J. Sound Vib.
,
485
, p.
115578
.
27.
He
,
L.
,
Wen
,
Z.
,
Jin
,
Y.
,
Torrent
,
D.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2021
, “
Inverse Design of Topological Metaplates for Flexural Waves With Machine Learning
,”
Mater. Des.
,
199
, p.
109390
.
28.
Zhong
,
H.
,
Tian
,
Y.
,
Gao
,
N.
,
Lu
,
K.
, and
Wu
,
J.
,
2021
, “
Ultra-Thin Composite Underwater Honeycomb-Type Acoustic Metamaterial With Broadband Sound Insulation and High Hydrostatic Pressure Resistance
,”
Compos. Struct.
,
277
, p.
114603
.
29.
Wei
,
Y.
,
Liu
,
X.
, and
Hu
,
G.
,
2021
, “
Quadramode Materials: Their Design Method and Wave Property
,”
Mater. Des.
,
210
, p.
110031
.
30.
Zhao
,
B.
,
Wang
,
D.
,
Zhou
,
P.
,
Liu
,
X.
, and
Hu
,
G.
,
2022
, “
Design of Load-Bearing Materials for Isolation of Low-Frequency Waterborne Sound
,”
Phys. Rev. Appl.
,
17
(
3
), p.
034065
.
31.
Wang
,
Y.
,
Zhao
,
H.
,
Yang
,
H.
,
Liu
,
J.
,
Yu
,
D.
, and
Wen
,
J.
,
2022
, “
Topological Design of Lattice Materials With Application to Underwater Sound Insulation
,”
Mech. Syst. Signal Pr.
,
171
, p.
108911
.
32.
Ibrahim
,
R.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
33.
Wu
,
L.
,
Wang
,
Y.
,
Zhai
,
Z.
,
Yang
,
Y.
,
Krishnaraju
,
D.
,
Lu
,
J.
,
Wu
,
F.
,
Wang
,
Q.
, and
Jiang
,
H.
,
2020
, “
Mechanical Metamaterials for Full-Band Mechanical Wave Shielding
,”
Appl. Mater. Today
,
20
, p.
100671
.
34.
Carrella
,
A.
,
Brennan
,
M.
,
Waters
,
T.
, and
Lopes Jr
,
V.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.
35.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
.
36.
Carrella
,
A.
,
Brennan
,
M.
,
Waters
,
T.
, and
Shin
,
K.
,
2008
, “
On the Design of a High-Static–Low-Dynamic Stiffness Isolator Using Linear Mechanical Springs and Magnets
,”
J. Sound Vib.
,
315
(
3
), pp.
712
720
.
37.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static–Low-Dynamic Stiffness Vibration Isolator
,”
J. Sound Vib.
,
329
(
9
), pp.
1254
1273
.
38.
Feng
,
X.
, and
Jing
,
X.
,
2019
, “
Human Body Inspired Vibration Isolation: Beneficial Nonlinear Stiffness, Nonlinear Damping & Nonlinear Inertia
,”
Mech. Syst. Signal Pr.
,
117
, pp.
786
812
.
39.
Wang
,
Y.
, and
Jing
,
X.
,
2019
, “
Nonlinear Stiffness and Dynamical Response Characteristics of an Asymmetric X-Shaped Structure
,”
Mech. Syst. Signal Pr.
,
125
, pp.
142
169
.
40.
Zhang
,
Q.
,
Guo
,
D.
, and
Hu
,
G.
,
2021
, “
Tailored Mechanical Metamaterials With Programmable Quasi-Zero Stiffness Features for Full-Band Vibration Isolation
,”
Adv. Funct. Mater.
,
31
(
33
), p.
2101428
.
41.
Zhou
,
J.
,
Pan
,
H.
,
Cai
,
C.
, and
Xu
,
D.
,
2021
, “
Tunable Ultralow Frequency Wave Attenuations in One-Dimensional Quasi-Zero-Stiffness Metamaterial
,”
Int. J. Mech. Mater. Des.
,
17
(
2
), pp.
285
300
.
42.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2010
, “
Sound Radiation of Orthogonally Rib-Stiffened Sandwich Structures With Cavity Absorption
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2198
2206
.
43.
Wang
,
D.-W.
, and
Ma
,
L.
,
2017
, “
Sound Transmission Through Composite Sandwich Plate With Pyramidal Truss Cores
,”
Compos. Struct.
,
164
, pp.
104
117
.
44.
Hughes
,
T. J.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, Nurbs, Exact Geometry and Mesh Refinement
,”
Comput. Method. Appl. M.
,
194
(
39–41
), pp.
4135
4195
.
45.
Wang
,
J.
,
Lu
,
T. J.
,
Woodhouse
,
J.
,
Langley
,
R. S.
, and
Evans
,
J.
,
2005
, “
Sound Transmission Through Lightweight Double-Leaf Partitions: Theoretical Modelling
,”
J. Sound Vib.
,
286
(
4–5
), pp.
817
847
.
You do not currently have access to this content.