Abstract

The wavelet multiresolution interpolation Galerkin method in which both the unknown functions and nonlinear terms are approximated by their respective projections onto the same wavelet space is utilized to implement the spatial discretization of the highly coupled and nonlinear Von Karman equation for thin circular plates with various types of boundary conditions and external loads. Newton’s method and the assumption of a single harmonic response are then used for solving the static bending and free vibration problems, respectively. Highly accurate wavelet solutions for an extremely wide range of deflections are finally obtained by the proposed method. These results for moderately large deflections are in good agreement with existing solutions. Meanwhile, the other results for larger deflections are rarely achieved by using other methods. Comparative studies also demonstrate that the present wavelet method has higher accuracy and lower computational cost than many existing methods for solving geometrically nonlinear problems of thin circular plates. Moreover, the solutions for large deflection problems with concentrated load support the satisfactory capacity for handling singularity of the proposed wavelet method. In addition, a trivial initial guess, such as zero, can always lead to a convergent solution in very few iterations, even when the deflection is as large as over 46 times thickness of plate, showing an excellent convergence and stability of the present wavelet method in solving highly nonlinear problems.

References

1.
Li
,
A.
,
Ji
,
X.
,
Zhou
,
S.
,
Wang
,
L.
,
Chen
,
J.
, and
Liu
,
P.
,
2021
, “
Nonlinear Axisymmetric Bending Analysis of Strain Gradient Thin Circular Plate
,”
Appl. Math. Model.
,
89
, pp.
363
380
.
2.
Javani
,
M.
,
Kiani
,
Y.
, and
Eslami
,
M. R.
,
2021
, “
Geometrically Nonlinear Free Vibration of FG-GPLRC Circular Plate on the Nonlinear Elastic Foundation
,”
Compos. Struct.
,
261
, p.
113515
.
3.
Genao
,
F. Y.
,
Kim
,
J.
, and
Żur
,
K. K.
,
2021
, “
Nonlinear Finite Element Analysis of Temperature-Dependent Functionally Graded Porous Micro-Plates Under Thermal and Mechanical Loads
,”
Compos. Struct.
,
256
, p.
112931
.
4.
Chen
,
Y. Z.
,
2012
, “
Innovative Iteration Technique for Nonlinear Ordinary Differential Equations of Large Deflection Problem of Circular Plates
,”
Mech. Res. Commun.
,
43
, pp.
75
79
.
5.
Zheng
,
X.
,
1990
,
Theory and Application for Large Deflection of Circular Plates
,
Jilin Science and Technology Press
,
Changchun
, pp.
18
189
.
6.
Vincent
,
J. J.
,
1931
, “
The Bending of a Thin Circular Plate
,”
Philos. Mag.
,
12
(
75
), pp.
185
196
.
7.
Chen
,
S.
, and
Kuang
,
J.
,
1981
, “
The Perturbation Parameter in the Problem of Large Deflection of Clamped Circular Plates
,”
Appl. Math. Mech. (Engl. Ed.)
,
2
(
1
), pp.
137
154
.
8.
Chien
,
W. Z.
,
1947
, “
Large Deflection of a Circular Clamped Plate Under Uniform Pressure
,”
Acta Phys. Sin.
,
7
(
2
), pp.
102
113
.
9.
Chien
,
W. Z.
,
1948
, “
Asymptotic Behavior of a Thin Clamped Circular Plate Under Uniform Normal Pressure at Very Large Deflection
,”
Sci. Rep. Nat. Tsing Hua Univ.
,
5
(
1
), pp.
71
94
.
10.
Keller
,
H. B.
, and
Reiss
,
E. L.
,
1958
, “
Iterative Solutions for the Non-Linear Bending of Circular Plates
,”
Commun. Pure Appl. Math.
,
11
(
3
), pp.
273
292
.
11.
Zheng
,
X.
, and
Zhou
,
Y.
,
1989
, “
On Convergence of Interpolated Iterative Method of Geometrically Nonlinear Equations of Circular Plates
,”
Sci. China (Series A)
,
32
(
3
), pp.
316
327
.
12.
Zhong
,
X. X.
, and
Liao
,
S. J.
,
2017
, “
Analytic Solutions of Von Kármán Plate Under Arbitrary Uniform Pressure—Equations in Differential Form
,”
Stud. Appl. Math.
,
138
(
4
), pp.
371
400
.
13.
Yazdi
,
A. A.
,
2016
, “
Assessment of Homotopy Perturbation Method for Study the Forced Nonlinear Vibration of Orthotropic Circular Plate on Elastic Foundation
,”
Lat. Am. J. Solids Struct.
,
13
(
2
), pp.
243
256
.
14.
Haterbouch
,
M.
, and
Benamar
,
R.
,
2003
, “
The Effects of Large Vibration Amplitudes on the Axisymmetric Mode Shapes and Natural Frequencies of Clamped Thin Isotropic Circular Plates. Part I: Iterative and Explicit Analytical Solution for Non-Linear Transverse Vibrations
,”
J. Sound Vib.
,
265
(
1
), pp.
123
154
.
15.
Turvey
,
G. J.
, and
Der-Avanessian
,
N. G. V.
,
1986
, “
Elastic Large Deflection of Circular Plates Using Graded Finite-Differences
,”
Comput. Struct.
,
23
(
6
), pp.
763
774
.
16.
Nguyen-Van
,
H.
,
Nguyen-Hoai
,
N.
,
Chau-Dinh
,
T.
, and
Tran-Cong
,
T.
,
2015
, “
Large Deflection Analysis of Plates and Cylindrical Shells by an Efficient Four-Node Flat Element With Mesh Distortions
,”
Acta Mech.
,
226
(
8
), pp.
2693
2713
.
17.
Cheung
,
Y. K.
,
Zhang
,
S.
, and
Cheng
,
W.
,
2001
, “
Refined Non-Conforming Triangular Plate Element for Geometrically Nonlinear Analysis
,”
Sci. Iran.
,
8
(
2
), pp.
81
91
.
18.
Stricklin
,
J. A.
,
Haisler
,
W. E.
,
Tisdale
,
P. R.
, and
Gunderson
,
R.
1969
, “
A Rapidly Converging Triangular Plate Element
,”
AIAA J.
,
7
(
1
), pp.
180
181
.
19.
Zhang
,
Y. X.
, and
Kim
,
K. S.
,
2005
, “
Linear and Geometrically Nonlinear Analysis of Plates and Shells by a New Refined Non-Conforming Triangular Plate/Shell Element
,”
Comput. Mech.
,
36
(
5
), pp.
331
342
.
20.
Zhang
,
Y. X.
, and
Cheung
,
Y. K.
,
2003
, “
Geometric Nonlinear Analysis of Thin Plates by a Refined Nonlinear Non-Conforming Triangular Plate Element
,”
Thin-Walled Struct.
,
41
(
5
), pp.
403
418
.
21.
Pica
,
A.
,
Wood
,
R. D.
, and
Hinton
,
E.
,
1980
, “
Finite Element Analysis of Geometrically Nonlinear Plate Behaviour Using a Mindlin Formulation
,”
Comput. Struct.
,
11
(
3
), pp.
203
215
.
22.
Reddy
,
J. N.
, and
Huang
,
C. L.
,
1981
, “
Large Amplitude Free Vibrations of Annular Plates of Varying Thickness
,”
J. Sound Vib.
,
79
(
3
), pp.
387
396
.
23.
Al-Gahtani
,
H. J.
, and
Naffa’A
,
M.
,
2009
, “
RBF Meshless Method for Large Deflection of Thin Plates With Immovable Edges
,”
Eng. Anal. Bound. Elem.
,
33
(
2
), pp.
176
183
.
24.
Wang
,
X.
,
Zhou
,
G.
, and
Jia
,
D.
,
1995
, “
Differential Quadrature for Axisymmetric Geometrically Nonlinear Analysis of Circular Plates
,”
Trans. Nanjing Univ. Aeronaut. Astronaut.
,
12
(
2
), pp.
134
142
.
25.
Nath
,
Y.
,
Dumir
,
P. C.
, and
Bhatiaf
,
R. S.
,
1985
, “
Nonlinear Static and Dynamic Analysis of Circular Plates and Shallow Spherical Shells Using the Collocation Method
,”
Int. J. Numer. Methods Eng.
,
21
(
3
), pp.
565
578
.
26.
Cui
,
X. Y.
,
Liu
,
G. R.
,
Li
,
G. Y.
,
Zhao
,
X.
,
Nguyen
,
T. T.
, and
Sun
,
G. Y.
,
2008
, “
A Smoothed Finite Element Method (SFEM) for Linear and Geometrically Nonlinear Analysis of Plates and Shells
,”
Comput. Model. Eng. Sci.
,
28
(
2
), pp.
109
126
.
27.
Razdolsky
,
A. G.
,
2018
, “
Determination of Large Deflections for Elastic Circular Plate
,”
Proc. Inst. Civil Eng.-Eng. Comput. Mech.
,
171
(
1
), pp.
23
28
.
28.
Rao
,
G. V.
,
Reddy
,
G. K.
,
Varma
,
R. R.
, and
Rao
,
V. V. S.
,
2012
, “
Solution for Large Amplitude Vibrations of Circular Plates Via Modified Berger’s Approximation
,”
IES J. Part A: Civil Struct. Eng.
,
5
(
1
), pp.
56
61
.
29.
Allahverdizadeh
,
A.
,
Naei
,
M. H.
, and
Bahrami
,
M. N.
,
2008
, “
Nonlinear Free and Forced Vibration Analysis of Thin Circular Functionally Graded Plates
,”
J. Sound Vib.
,
310
(
4–5
), pp.
966
984
.
30.
Huang
,
C. L. D.
, and
Al-Khattat
,
I. M.
,
1977
, “
Finite Amplitude Vibrations of a Circular Plate
,”
Int. J. Non-Linear Mech.
,
12
(
5
), pp.
297
306
.
31.
Srinivasan
,
A. V.
,
1965
, “
Large Amplitude-Free Oscillations of Beams and Plates
,”
AIAA J.
,
3
(
10
), pp.
1651
1653
.
32.
Wah
,
T.
,
1963
, “
Vibration of Circular Plates at Large Amplitudes
,”
J. Eng. Mech. Div.
,
89
(
5
), pp.
1
16
.
33.
Nowinski
,
J.
,
1962
, “
Nonlinear Transverse Vibrations of Circular Elastic Plates Built-In at the Boundary
,”
Proceedings of the Fourth US National Congress of Applied Mechanics
,
Berkeley, CA
,
June 18–21
, Vol. 1, pp.
325
334
.
34.
Haterbouch
,
M.
, and
Benamar
,
R.
,
2005
, “
Geometrically Nonlinear Free Vibrations of Simply Supported Isotropic Thin Circular Plates
,”
J. Sound Vib.
,
280
(
3–5
), pp.
903
924
.
35.
Lepik
,
U.
, and
Hein
,
H.
,
2014
,
Haar Wavelets: With Applications
,
Springer
,
New York
, pp.
1
120
.
36.
Zhou
,
Y.
,
2021
,
Wavelet Numerical Method and Its Applications in Nonlinear Problems
,
Springer Nature
,
Singapore
, pp.
195
342
.
37.
Majak
,
J.
,
Pohlak
,
M.
, and
Eerme
,
M.
,
2009
, “
Application of the Haar Wavelet-Based Discretization Technique to Problems of Orthotropic Plates and Shells
,”
Mech. Compos. Mater.
,
45
(
6
), pp.
631
642
.
38.
Shvartsman
,
B.
, and
Majak
,
J.
,
2016
, “
Numerical Method for Stability Analysis of Functionally Graded Beams on Elastic Foundation
,”
Appl. Math. Model.
,
40
(
5-6
), pp.
3713
3719
.
39.
Majak
,
J.
,
Pohlak
,
M.
,
Karjust
,
K.
,
Eerme
,
M.
,
Kurnitski
,
J.
, and
Shvartsman
,
B.
,
2018
, “
New Higher Order Haar Wavelet Method: Application to FGM Structures
,”
Compos. Struct.
,
201
, pp.
72
78
.
40.
Ratas
,
M.
,
Majak
,
J.
, and
Salupere
,
A.
,
2021
, “
Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method
,”
Mathematics
,
9
(
21
), p.
2809
.
41.
Liu
,
X.
,
Liu
,
G. R.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2019
, “
A Wavelet Multiresolution Interpolation Galerkin Method for Targeted Local Solution Enrichment
,”
Comput. Mech.
,
64
(
4
), pp.
989
1016
.
42.
Liu
,
X.
,
Liu
,
G. R.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2020
, “
A Wavelet Multiresolution Interpolation Galerkin Method With Effective Treatments for Discontinuity for Crack Growth Analyses
,”
Eng. Fract. Mech.
,
225
, p.
106836
.
43.
Liu
,
X.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2022
, “
Wavelet Multiresolution Interpolation Galerkin Method for Nonlinear Boundary Value Problems With Localized Steep Gradients
,”
Appl. Math. Mech. (Eng. Ed.)
,
43
(
6
), pp.
863
882
.
44.
Ratas
,
M.
,
Salupere
,
A.
, and
Majak
,
J.
,
2021
, “
Solving Nonlinear PDEs Using the Higher Order Haar Wavelet Method on Nonuniformand Adaptive Grids
,”
Math. Model. Anal.
,
26
(
1
), pp.
147
169
.
45.
Nastos
,
C. V.
, and
Saravanos
,
D. A.
,
2021
, “
Multiresolution Daubechies Finite Wavelet Domain Method for Transient Dynamic Wave Analysis in Elastic Solids
,”
Int. J. Num. Methods Eng.
,
122
(
23
), pp.
7078
7100
.
46.
Dimitriou
,
D. K.
,
Nastos
,
C. V.
, and
Saravanos
,
D. A.
,
2022
, “
Multiresolution Finite Wavelet Domain Method for Efficient Modeling of Guided Waves in Composite Beams
,”
Wave Motion
,
112
, p.
102958
.
47.
Liu
,
X.
,
Zhou
,
Y.
,
Wang
,
X.
, and
Wang
,
J.
,
2013
, “
A Wavelet Method for Solving a Class of Nonlinear Boundary Value Problems
,”
Commun. Nonlinear Sci. Num. Simul.
,
18
(
8
), pp.
1939
1948
.
48.
Wang
,
J.
,
Liu
,
X.
, and
Zhou
,
Y.
,
2018
, “
A High-Order Accurate Wavelet Method for Solving Schrödinger Equations With General Nonlinearity
,”
Appl. Math. Mech. (Eng. Ed.)
,
39
(
2
), pp.
275
290
.
49.
Hou
,
Z.
,
Weng
,
J.
,
Liu
,
X.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2022
, “
A Sixth-Order Wavelet Integral Collocation Method for Solving Nonlinear Boundary Value Problems in Three Dimensions
,”
Acta Mech. Sin.
,
38
(
2
), p.
421453
.
50.
Yang
,
Z.
, and
Liao
,
S.
,
2018
, “
On the Generalized Wavelet-Galerkin Method
,”
J. Comput. Appl. Math.
,
331
, pp.
178
195
.
51.
Vasilyev
,
O. V.
, and
Paolucci
,
S.
,
1996
, “
A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain
,”
J. Comput. Phys.
,
125
(
2
), pp.
498
512
.
52.
Liu
,
X.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2017
, “
A Space–Time Fully Decoupled Wavelet Galerkin Method for Solving a Class of Nonlinear Wave Problems
,”
Nonlinear Dyn.
,
90
(
1
), pp.
599
616
.
53.
Yang
,
Z. X.
,
Sun
,
J. Y.
,
Ran
,
G. M.
, and
He
,
X. T.
,
2017
, “
A New Solution to Főppl-Hencky Membrane Equation
,”
J. Mech.
,
33
(
4
), pp.
N7
N11
.
54.
Jin
,
C.
,
2008
, “
Large Deflection of Circular Membrane Under Concentrated Force
,”
Appl. Math. Mech. (Eng. Ed.)
,
29
(
7
), pp.
889
896
.
You do not currently have access to this content.