Abstract

Recently developed buckling-guided assembly methods provide a unique route to the design and manufacture of 3D mesostructures and microelectronic devices with superior performances and unusual functions. Combined with loading-path controlled strategies and/or active material designs, reconfigurable 3D mesostructures with multiple stable 3D geometries can be formed, holding promising potentials for applications in tunable antennas and multimodal actuators. The existing strategies are, however, limited by the applicable range of material types or requirements for switching between various complicated loading paths. Here, we present an electroadhesion-mediated strategy to achieve controlled adhesion of the 3D mesostructure to the substrate during the buckling-guided assembly. This strategy allows an active control of the delamination behavior in the film/substrate system, such that a variety of reconfigurable 3D mesostructures can be accessed by designing the 2D precursor pattern and electrode layout. An electromechanical model is developed to capture the delamination behavior of the film/substrate system under combined compression and voltage loadings, which agrees well with experimental measurements. Based on this model, an equivalent interface energy is proposed to quantify the contributions of the electroadhesion and van der Waals’ interactions, which also facilitates simulations of the interface delamination with cohesive models in finite element analyses (FEAs). Furthermore, a variety of reconfigurable 3D mesostructures are demonstrated experimentally, and their geometric configurations are in close accordance with the results of FEA using the concept of equivalent interface energy.

References

1.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K. I.
,
Huang
,
W.
,
Fu
,
H. R.
,
Kim
,
J.
,
Wei
,
Z.
, et al
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
2.
Zhang
,
Y. H.
,
Yan
,
Z.
,
Nan
,
K. W.
,
Xiao
,
D. Q.
,
Liu
,
Y. H.
,
Luan
,
H. W.
,
Fu
,
H. R.
, et al
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
38
), pp.
11757
11764
.
3.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M. D.
,
Ou
,
D. P.
,
Liu
,
Y. H.
,
Lin
,
Q.
, et al
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
.
4.
Cheng
,
X.
, and
Zhang
,
Y. H.
,
2019
, “
Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches
,”
Adv. Mater.
,
31
(
36
), p.
1901895
.
5.
Fan
,
Z. C.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2018
, “
A Double Perturbation Method of Postbuckling Analysis in 2D Curved Beams for Assembly of 3D Ribbon-Shaped Structures
,”
J. Mech. Phys. Solids
,
111
, pp.
215
238
.
6.
Fu
,
H. R.
,
Nan
,
K. W.
,
Bai
,
W. B.
,
Huang
,
W.
,
Bai
,
K.
,
Lu
,
L. Y.
,
Zhou
,
C. Q.
, et al
,
2018
, “
Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics
,”
Nat. Mater.
,
17
(
3
), pp.
268
276
.
7.
Pang
,
W. B.
,
Cheng
,
X.
,
Zhao
,
H. J.
,
Guo
,
X. G.
,
Ji
,
Z. Y.
,
Li
,
G. R.
,
Liang
,
Y. M.
, et al
,
2020
, “
Electro-Mechanically Controlled Assembly of Reconfigurable 3D Mesostructures and Electronic Devices Based on Dielectric Elastomer Platforms
,”
Natl. Sci. Rev.
,
7
(
2
), pp.
342
354
.
8.
Xue
,
Z. G.
,
Jin
,
T. Q.
,
Xu
,
S. W.
,
Bai
,
K.
,
He
,
Q.
,
Zhang
,
F.
,
Cheng
,
X.
, et al
,
2022
, “
Assembly of Complex 3D Structures and Electronics on Curved Surfaces
,”
Sci. Adv.
,
8
(
32
), p.
eabm6922
.
9.
Han
,
M. D.
,
Wang
,
H. L.
,
Yang
,
Y. Y.
,
Liang
,
C. M.
,
Bai
,
W. B.
,
Yan
,
Z.
,
Li
,
H. B.
, et al
,
2019
, “
Three-Dimensional Piezoelectric Polymer Microsystems for Vibrational Energy Harvesting, Robotic Interfaces and Biomedical Implants
,”
Nat. Electron.
,
2
(
1
), pp.
26
35
.
10.
Kim
,
B. H.
,
Liu
,
F.
,
Yu
,
Y.
,
Jang
,
H.
,
Xie
,
Z. Q.
,
Li
,
K.
,
Lee
,
J.
, et al
,
2018
, “
Mechanically Guided Post-Assembly of 3D Electronic Systems
,”
Adv. Funct. Mater.
,
28
(
48
), p.
1803149
.
11.
Liu
,
F.
,
Chen
,
Y.
,
Song
,
H. L.
,
Zhang
,
F.
,
Fan
,
Z. C.
,
Liu
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2019
, “
High Performance, Tunable Electrically Small Antennas Through Mechanically Guided 3D Assembly
,”
Small
,
15
(
1
), p.
1804055
.
12.
Nan
,
K. W.
,
Wang
,
H. L.
,
Ning
,
X.
,
Miller
,
K. A.
,
Wei
,
C.
,
Liu
,
Y. P.
,
Li
,
H. B.
, et al
,
2019
, “
Soft Three-Dimensional Microscale Vibratory Platforms for Characterization of Nano-Thin Polymer Films
,”
ACS Nano
,
13
(
1
), pp.
449
457
.
13.
Zhang
,
Y. C.
,
Jiao
,
Y.
,
Wu
,
J.
,
Ma
,
Y. J.
, and
Feng
,
X.
,
2020
, “
Configurations Evolution of a Buckled Ribbon in Response to Out-of-Plane Loading
,”
Extreme Mech. Lett.
,
34
, p.
100604
.
14.
Zhang
,
Y. H.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X. L.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), pp.
1
7
.
15.
Bai
,
K.
,
Cheng
,
X.
,
Xue
,
Z. G.
,
Song
,
H. L.
,
Sang
,
L.
,
Zhang
,
F.
,
Liu
,
F.
, et al
,
2020
, “
Geometrically Reconfigurable 3D Mesostructures and Electromagnetic Devices Through a Rational Bottom-Up Design Strategy
,”
Sci. Adv.
,
6
(
30
), p.
eabb7417
.
16.
Song
,
H. L.
,
Luo
,
G. Q.
,
Ji
,
Z. Y.
,
Bo
,
R. H.
,
Xue
,
Z. G.
,
Yan
,
D. J.
,
Zhang
,
F.
, et al
,
2022
, “
Highly-Integrated, Miniaturized, Stretchable Electronic Systems Based on Stacked Multilayer Network Materials
,”
Sci. Adv.
,
8
(
11
), p.
eabm3785
.
17.
Zhang
,
F.
,
Li
,
S. P.
,
Shen
,
Z. M.
,
Cheng
,
X.
,
Xue
,
Z. G.
,
Zhang
,
H.
,
Song
,
H. L.
, et al
,
2021
, “
Rapidly Deployable and Morphable 3D Mesostructures With Applications in Multimodal Biomedical Devices
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
11
), p.
e2026414118
.
18.
Yan
,
D. J.
,
Chang
,
J. H.
,
Zhang
,
H.
,
Liu
,
J. X.
,
Song
,
H. L.
,
Xue
,
Z. G.
,
Zhang
,
F.
, and
Zhang
,
Y. H.
,
2020
, “
Soft Three-Dimensional Network Materials With Rational Bio-Mimetic Designs
,”
Nat. Commun.
,
11
(
1
), pp.
1
1
.
19.
Pang
,
W.
,
Xu
,
S.
,
Wu
,
J.
,
Bo
,
R.
,
Jin
,
T.
,
Xiao
,
Y.
,
Liu
,
Z.
, et al
,
2022
, “
A Soft Microrobot With Highly Deformable 3D Actuators for Climbing and Transitioning Complex Surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
49
), p.
e2215028119
.
20.
Zhang
,
C.
,
Deng
,
H.
,
Xie
,
Y. C.
,
Zhang
,
C.
,
Su
,
J. W.
, and
Lin
,
J.
,
2019
, “
Stimulus Responsive 3D Assembly for Spatially Resolved Bifunctional Sensors
,”
Small
,
15
(
51
), p.
1904224
.
21.
Ling
,
Y.
,
Pang
,
W. B.
,
Li
,
X. P.
,
Goswami
,
S.
,
Xu
,
Z.
,
Stroman
,
D.
,
Liu
,
Y. C.
, et al
,
2020
, “
Laser-Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human-Soft Actuators Interaction
,”
Adv. Mater.
,
32
(
17
), p.
1908475
.
22.
Li
,
Y.
,
Luo
,
C. Q.
,
Yu
,
K.
, and
Wang
,
X. J.
,
2021
, “
Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures Via Liquid Crystal Elastomer Platforms
,”
ACS Appl. Mater. Interfaces
,
13
(
7
), pp.
8929
8939
.
23.
Park
,
J. K.
,
Nan
,
K. W.
,
Luan
,
H. W.
,
Zheng
,
N.
,
Zhao
,
S. W.
,
Zhang
,
H.
,
Cheng
,
X.
, et al
,
2019
, “
Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects
,”
Adv. Mater.
,
31
(
52
), p.
1905715
.
24.
Li
,
Y.
,
Yu
,
H. B.
,
Yu
,
K.
,
Guo
,
X. G.
, and
Wang
,
X. J.
,
2021
, “
Reconfigurable Three-Dimensional Mesotructures of Spatially Programmed Liquid Crystal Elastomers and Their Ferromagnetic Composites
,”
Adv. Funct. Mater.
,
31
(
23
), p.
2100338
.
25.
Miao
,
L. M.
,
Song
,
Y.
,
Ren
,
Z. Y.
,
Xu
,
C.
,
Wan
,
J.
,
Wang
,
H. B.
,
Guo
,
H.
,
Xiang
,
Z. H.
,
Han
,
M. D.
, and
Zhang
,
H. X.
,
2021
, “
3D Temporary-Magnetized Soft Robotic Structures for Enhanced Energy Harvesting
,”
Adv. Mater.
,
33
(
40
), p.
2102691
.
26.
Li
,
Y.
,
Avis
,
S. J.
,
Chen
,
J. B.
,
Wu
,
G. F.
,
Zhang
,
T.
,
Kusumaatmaja
,
H.
, and
Wang
,
X. J.
,
2021
, “
Reconfiguration of Multistable 3D Ferromagnetic Mesostructures Guided by Energy Landscape Surveys
,”
Extreme Mech. Lett.
,
48
, p.
101428
.
27.
Zhu
,
Y.
,
Schenk
,
M.
, and
Filipov
,
E. T.
,
2022
, “
A Review on Origami Simulations: From Kinematics, To Mechanics, Toward Multiphysics
,”
ASME Appl. Mech. Rev.
,
74
(
3
), p.
030801
.
28.
Luo
,
G. Q.
,
Fu
,
H. R.
,
Cheng
,
X.
,
Bai
,
K.
,
Shi
,
L. P.
,
He
,
X. D.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2019
, “
Mechanics of Bistable Cross-Shaped Structures Through Loading-Path Controlled 3D Assembly
,”
J. Mech. Phys. Solids
,
129
, pp.
261
277
.
29.
Zhao
,
H. B.
,
Li
,
K.
,
Han
,
M. D.
,
Zhu
,
F.
,
Vazquez-Guardado
,
A.
,
Guo
,
P. J.
,
Xie
,
Z. Q.
, et al
,
2019
, “
Buckling and Twisting of Advanced Materials Into Morphable 3D Mesostructures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
27
), pp.
13239
13248
.
30.
Zhang
,
Y.
,
Wang
,
F.
,
Ma
,
Y.
, and
Feng
,
X.
,
2019
, “
Buckling Configurations of Stiff Thin Films Tuned by Micro-Patterns on Soft Substrate
,”
Int. J. Solids Struct.
,
161
, pp.
55
63
.
31.
Wang
,
H.
, and
Yamamoto
,
A.
,
2015
, “
Peel Force of Electrostatic Adhesion in Crawler-Type Electrostatic Climbing Robots
,”
J. Jpn. Soc. Appl. Electromagn. Mech.
,
23
(
3
), pp.
498
503
.
32.
Cacucciolo
,
V.
,
Shea
,
H.
, and
Carbone
,
G.
,
2022
, “
Peeling in Electroadhesion Soft Grippers
,”
Extreme Mech. Lett.
,
50
, p.
101529
.
33.
Linghu
,
C. H.
,
Zhang
,
S.
,
Wang
,
C. J.
,
Yu
,
K. X.
,
Li
,
C. L.
,
Zeng
,
Y. J.
,
Zhu
,
H. D.
,
Jin
,
X. H.
,
You
,
Z. Y.
, and
Song
,
J. Z.
,
2020
, “
Universal SMP Gripper With Massive and Selective Capabilities for Multiscaled, Arbitrarily Shaped Objects
,”
Sci. Adv.
,
6
(
7
), p.
eaay5120
.
34.
Chen
,
Z.
,
Linghu
,
C. H.
,
Yu
,
K. X.
,
Zhu
,
J. Y.
,
Luo
,
H. Y.
,
Qian
,
C. H.
,
Chen
,
Y.
,
Du
,
Y. P.
,
Zhang
,
S.
, and
Song
,
J. Z.
,
2019
, “
Fast Digital Patterning of Surface Topography Toward Three-Dimensional Shape-Changing Structures
,”
ACS Appl. Mater. Interfaces
,
11
(
51
), pp.
48412
48418
.
35.
Gong
,
X.
,
Tan
,
K.
,
Deng
,
Q.
, and
Shen
,
S. P.
,
2020
, “
Athermal Shape Memory Effect in Magnetoactive Elastomers
,”
ACS Appl. Mater. Interfaces
,
12
(
14
), pp.
16930
16936
.
36.
Tan
,
K.
,
Chen
,
L. L.
,
Yang
,
S. Y.
, and
Deng
,
Q.
,
2022
, “
Dynamic Snap-Through Instability and Damped Oscillation of a Flat Arch of Hard Magneto-Active Elastomers
,”
Int. J. Mech. Sci.
,
230
, p.
107523
.
37.
Lu
,
T. Q.
,
Huang
,
J. H.
,
Jordi
,
C.
,
Kovacs
,
G.
,
Huang
,
R.
,
Clarke
,
D. R.
, and
Suo
,
Z. G.
,
2012
, “
Dielectric Elastomer Actuators Under Equal-Biaxial Forces, Uniaxial Forces, and Uniaxial Constraint of Stiff Fibers
,”
Soft Matter
,
8
(
22
), pp.
6167
6173
.
38.
Lu
,
T. Q.
,
Ma
,
C.
, and
Wang
,
T. J.
,
2020
, “
Mechanics of Dielectric Elastomer Structures: A Review
,”
Extreme Mech. Lett.
,
38
, p.
100752
.
39.
Tan
,
K.
,
Wen
,
X.
,
Deng
,
Q.
,
Shen
,
S. P.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2021
, “
Soft Rubber as a Magnetoelectric Material-Generating Electricity From the Remote Action of a Magnetic Field
,”
Mater. Today
,
43
, pp.
8
16
.
40.
Yang
,
S. Y.
,
Zhao
,
X. H.
, and
Sharma
,
P.
,
2017
, “
Avoiding the Pull-In Instability of a Dielectric Elastomer Film and the Potential for Increased Actuation and Energy Harvesting
,”
Soft Matter
,
13
(
26
), pp.
4552
4558
.
41.
Deng
,
Q.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
42.
Shen
,
S. P.
, and
Hu
,
S. L.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.
43.
Liang
,
X.
,
Hu
,
S. L.
, and
Shen
,
S. P.
,
2014
, “
Effects of Surface and Flexoelectricity on a Piezoelectric Nanobeam
,”
Smart Mater. Struct.
,
23
(
3
), p.
035020
.
44.
Chen
,
A.-L.
,
Wang
,
Y.-S.
,
Wang
,
Y.-F.
,
Zhou
,
H.-T.
, and
Yuan
,
S.-M.
,
2022
, “
Design of Acoustic/Elastic Phase Gradient Metasurfaces: Principles, Functional Elements, Tunability, and Coding
,”
ASME Appl. Mech. Rev.
,
74
(
2
), p.
020801
.
45.
Zhou
,
H. L.
,
Zhang
,
Y.
,
Qiu
,
Y.
,
Wu
,
H. P.
,
Qin
,
W. Y.
,
Liao
,
Y. B.
,
Yu
,
Q. M.
, and
Cheng
,
H. Y.
,
2020
, “
Stretchable Piezoelectric Energy Harvesters and Self-Powered Sensors for Wearable and Implantable Devices
,”
Biosens. Bioelectron.
,
168
, p.
112569
.
46.
Zhang
,
S. H.
,
Zhu
,
J.
,
Zhang
,
Y. Y.
,
Chen
,
Z. S.
,
Song
,
C. Y.
,
Li
,
J. Q.
,
Yi
,
N.
, et al
,
2022
, “
Standalone Stretchable RF Systems Based on Asymmetric 3D Microstrip Antennas With On-Body Wireless Communication and Energy Harvesting
,”
Nano Energy
,
96
, p.
107069
.
47.
Lee
,
S.
, and
Pharr
,
M.
,
2019
, “
Sideways and Stable Crack Propagation in a Silicone Elastomer
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
19
), pp.
9251
9256
.
48.
Liu
,
Y.
,
Pharr
,
M.
, and
Salvatore
,
G. A.
,
2017
, “
Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring
,”
ACS Nano
,
11
(
10
), pp.
9614
9635
.
49.
Yin
,
Y. F.
,
Li
,
M.
,
Li
,
Y. H.
, and
Song
,
J. Z.
,
2020
, “
Skin Pain Sensation of Epidermal Electronic Device/Skin System Considering Non-Fourier Heat Conduction
,”
J. Mech. Phys. Solids
,
138
, p.
103927
.
50.
Zhang
,
J. P.
,
Li
,
Y. H.
, and
Xing
,
Y. F.
,
2019
, “
Theoretical and Experimental Investigations of Transient Thermo-Mechanical Analysis on Flexible Electronic Devices
,”
Int. J. Mech. Sci.
,
160
, pp.
192
199
.
51.
Chen
,
H.
,
Zhu
,
F.
,
Jang
,
K. I.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Zhang
,
Y. H.
,
Huang
,
Y. G.
, and
Ma
,
Y. J.
,
2018
, “
The Equivalent Medium of Cellular Substrate Under Large Stretching, With Applications to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
120
, pp.
199
207
.
52.
Zhu
,
F.
,
Xiao
,
H. B.
,
Li
,
H. B.
,
Huang
,
Y. G.
, and
Ma
,
Y. J.
,
2019
, “
Irregular Hexagonal Cellular Substrate for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
034501
.
53.
Ma
,
Q.
, and
Zhang
,
Y. H.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
54.
Ma
,
Q.
,
Cheng
,
H. Y.
,
Jang
,
K. I.
,
Luan
,
H. W.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
.
55.
Liu
,
J. X.
,
Yan
,
D. J.
, and
Zhang
,
Y. H.
,
2021
, “
Mechanics of Unusual Soft Network Materials With Rotatable Structural Nodes
,”
J. Mech. Phys. Solids
,
146
, p.
104210
.
56.
Wang
,
H.
,
Zhao
,
Z.
,
Liu
,
P.
, and
Guo
,
X.
,
2021
, “
Laser-Induced Porous Graphene on Polyimide/PDMS Composites and Its Kirigami-Inspired Strain Sensor
,”
Theor. Appl. Mech. Lett.
,
11
(
2
), p.
100240
.
57.
Gao
,
Y.
,
Han
,
X. Y.
,
Chen
,
J. J.
,
Pan
,
Y. D.
,
Yang
,
M.
,
Lu
,
L. H.
,
Yang
,
J.
,
Suo
,
Z. G.
, and
Lu
,
T. Q.
,
2021
, “
Hydrogel-Mesh Composite for Wound Closure
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
28
), p.
e2103457118
.
58.
Persson
,
B. N. J.
,
2021
, “
General Theory of Electroadhesion
,”
J. Phys.-Condes. Matter
,
33
(
43
), p.
435001
.
59.
Qin
,
L.
,
Liang
,
X.
,
Huang
,
H.
,
Chui
,
C. K.
,
Yeow
,
R. C.-H.
, and
Zhu
,
J.
,
2019
, “
A Versatile Soft Crawling Robot With Rapid Locomotion
,”
Soft Robot.
,
6
(
4
), pp.
455
467
.
60.
Gu
,
G. Y.
,
Zou
,
J.
,
Zhao
,
R. K.
,
Zhao
,
X. H.
, and
Zhu
,
X. Y.
,
2018
, “
Soft Wall-Climbing Robots
,”
Sci. Robot.
,
3
(
25
), p.
eaat2874
.
61.
de Rivaz
,
S. D.
,
Goldberg
,
B.
,
Doshi
,
N.
,
Jayaram
,
K.
,
Zhou
,
J.
, and
Wood
,
R. J.
,
2018
, “
Inverted and Vertical Climbing of a Quadrupedal Microrobot Using Electroadhesion
,”
Sci. Robot.
,
3
(
25
), p.
eaau3038
.
62.
Wang
,
H.
,
Yamamoto
,
A.
, and
Higuchi
,
T.
, “
Electrostatic-Motor-Driven Electroadhesive Robot
,”
Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
914
919
.
63.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
.
64.
Kim
,
S.
,
Jiang
,
Y. J.
,
Towell
,
K. L. T.
,
Boutilier
,
M. S. H.
,
Nayakanti
,
N.
,
Cao
,
C. H.
,
Chen
,
C. X.
, et al
,
2019
, “
Soft Nanocomposite Electroadhesives for Digital Micro- and Nanotransfer Printing
,”
Sci. Adv.
,
5
(
10
), p.
eaax4790
.
65.
Xiong
,
Q.
,
Liang
,
X. Q.
,
Wei
,
D. Y.
,
Wang
,
H. C.
,
Zhu
,
R. J.
,
Wang
,
T.
,
Mao
,
J. J.
, and
Wang
,
H. Q.
,
2022
, “
So-EAGlove: VR Haptic Glove Rendering Softness Sensation With Force-Tunable Electrostatic Adhesive Brakes
,”
IEEE Trans. Robot.
,
38
(
6
), pp.
3450
3462
.
66.
Zhang
,
Q. T.
, and
Yin
,
J.
,
2018
, “
Spontaneous Buckling-Driven Periodic Delamination of Thin Films on Soft Substrates Under Large Compression
,”
J. Mech. Phys. Solids
,
118
, pp.
40
57
.
67.
Vella
,
D.
,
Bico
,
J.
,
Boudaoud
,
A.
,
Roman
,
B.
, and
Reis
,
P. M.
,
2009
, “
The Macroscopic Delamination of Thin Films From Elastic Substrates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
27
), pp.
10901
10906
.
68.
Shuai
,
Y.
,
Zhao
,
J.
,
Bo
,
R.
,
Lan
,
Y.
,
Lv
,
Z.
, and
Zhang
,
Y.
,
2023
, “
A Wrinkling-Assisted Strategy for Controlled Interface Delamination in Mechanically-Guided 3D Assembly
,”
J. Mech. Phys. Solids
,
173
, p.
105203
.
69.
Gioia
,
G.
, and
Ortiz
,
M.
,
1997
, “
Delamination of Compressed Thin Films
,”
Adv. Appl. Mech.
,
33
(
8
), pp.
119
192
.
70.
Osterberg
,
P. M.
, and
Senturia
,
S. D.
,
1997
, “
M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
107
118
.
71.
Liu
,
Y.
,
Wang
,
X.
,
Xu
,
Y.
,
Xue
,
Z.
,
Zhang
,
Y.
,
Ning
,
X.
,
Cheng
,
X.
, et al
,
2019
, “
Harnessing the Interface Mechanics of Hard Films and Soft Substrates for 3D Assembly by Controlled Buckling
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
31
), p.
15368
.
You do not currently have access to this content.