Abstract

Owing to the significant effects of adhesive force and surface/membrane tension, the classical contact models often fail to describe the indentation responses of soft materials and biological systems. This work addresses the axisymmetric indentation of an elastic substrate with constant surface/membrane tension by a spherical, conical, or cylindrical flat indenter in the Johnson–Kendall–Roberts adhesive approximation. On the basis of non-adhesive contact solutions accounting for the surface/membrane tension effect, explicit expressions for the external load and depth with respect to the contact radius are derived for the adhesive contact cases, which act as the theoretical fundamental for the accurate analysis of indentation tests. Despite using different correction functions, the results for spherical indentation are consistent with the solution of previous studies. It is found that the role of surface/membrane tension in the adhesive contact behavior is controlled by a dimensionless parameter. As the parameter gets larger, the pull-off force and the contact size at zero-external load for spherical and conical indentations are smaller, whereas the pull-off force for cylindrical flat indentation is higher.

References

1.
Zhang
,
M. G.
,
Cao
,
Y. P.
,
Li
,
G. Y.
, and
Feng
,
X. Q.
,
2014
, “
Spherical Indentation Method for Determining the Constitutive Parameters of Hyperelastic Soft Materials
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
1
11
.
2.
Niu
,
T.
, and
Cao
,
G.
,
2014
, “
Finite Size Effect Does not Depend on the Loading History in Soft Matter Indentation
,”
J. Phys. D Appl. Phys.
,
47
(
38
), p.
385303
.
3.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
,
2002
, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
,
82
(
5
), pp.
2798
2810
.
4.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
,
2006
, “
Nanoindentation of Biological Materials
,”
Nano Today
,
1
(
3
), pp.
26
33
.
5.
Nguyen
,
T. D.
, and
Gu
,
Y.
,
2014
, “
Exploration of Mechanisms Underlying the Strain-Rate-Dependent Mechanical Property of Single Chondrocytes
,”
Appl. Phys. Lett.
,
104
(
18
), p.
183701
.
6.
Sen
,
S.
,
Subramanian
,
S.
, and
Discher
,
D. E.
,
2005
, “
Indentation and Adhesive Probing of a Cell Membrane With AFM: Theoretical Model and Experiments
,”
Biophys. J.
,
89
(
5
), pp.
3203
3213
.
7.
Zamir
,
E. A.
, and
Taber
,
L. A.
,
2004
, “
On the Effects of Residual Stress in Microindentation Tests of Soft Tissue Structures
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
276
283
.
8.
Hajji
,
M. A.
,
1978
, “
Indentation of a Membrane on an Elastic Half Space
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
320
324
.
9.
Hertz
,
H.
,
1882
, “
On the Contact Between Elastic Bodies
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
10.
Sneddon
,
I. N.
,
1965
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
3
(
1
), pp.
47
57
.
11.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
324
(
1558
), pp.
301
313
.
12.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: the JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.
13.
Gerberich
,
W. W.
,
Tymiak
,
N. I.
,
Grunlan
,
J. C.
,
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
,
2002
, “
Interpretations of Indentation Size Effects
,”
ASME J. Appl. Mech.
,
69
(
4
), pp.
433
442
.
14.
Zhang
,
T. Y.
, and
Xu
,
W. H.
,
2002
, “
Surface Effects on Nanoindentation
,”
J. Mater. Res.
,
17
(
7
), pp.
1715
1720
.
15.
Maugis
,
D.
, and
Barquins
,
M.
,
1981
, “
Adhesive Contact of a Conical Punch on an Elastic Half-Space
,”
J. Phys. Lett.
,
42
(
5
), pp.
95
97
.
16.
Borodich
,
F. M.
,
Galanov
,
B. A.
, and
Suarez-Alvarez
,
M. M.
,
2014
, “
The JKR-Type Adhesive Contact Problems for Power-Law Shaped Axisymmetric Punches
,”
J. Mech. Phys. Solids
,
68
, pp.
14
32
.
17.
Argatov
,
I.
,
Li
,
Q.
,
Pohrt
,
R.
, and
Popov
,
V. L.
,
2016
, “
Johnson-Kendall-Roberts Adhesive Contact for a Toroidal Indenter
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2191
), p.
20160218
.
18.
Style
,
R. W.
,
Hyland
,
C.
,
Boltyanskiy
,
R.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2013
, “
Surface Tension and Contact With Soft Elastic Solids
,”
Nat. Commun.
,
4
(
1
), p.
2728
.
19.
Cao
,
Z.
,
Stevens
,
M. J.
, and
Dobrynin
,
A. V.
,
2014
, “
Adhesion and Wetting of Nanoparticles on Soft Surfaces
,”
Macromolecules
,
47
(
9
), pp.
3203
3209
.
20.
Cao
,
Z.
, and
Dobrynin
,
A. V.
,
2015
, “
Contact Mechanics of Nanoparticles: Pulling Rigid Nanoparticles From Soft, Polymeric Surfaces
,”
Langmuir
,
31
(
45
), pp.
12520
12529
.
21.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
22.
Povstenko
,
Y. Z.
,
1993
, “
Theoretical Investigation of Phenomena Caused by Heterogeneous Surface Tension in Solids
,”
J. Mech. Phys. Solids
,
41
(
9
), pp.
1499
1514
.
23.
Huang
,
Z. P.
, and
Wang
,
J.
,
2006
, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect
,”
Acta Mech.
,
182
(
3–4
), pp.
195
210
.
24.
Dingreville
,
R.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.
25.
He
,
L. H.
, and
Lim
,
C. W.
,
2006
, “
Surface Green Function for a Soft Elastic Half-Space: Influence of Surface Stress
,”
Int. J. Solid Struct.
,
43
(
1
), pp.
132
143
.
26.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
(
1
), p.
013510
.
27.
Zhou
,
S.
, and
Gao
,
X. L.
,
2013
, “
Solutions of Half-Space and Half-Plane Contact Problems Based on Surface Elasticity
,”
Z. Angew. Math. Phys.
,
64
(
1
), pp.
145
166
.
28.
Long
,
J.
,
Ding
,
Y.
,
Yuan
,
W.
,
Chen
,
W.
, and
Wang
,
G.
,
2017
, “
General Relations of Indentations on Solids With Surface Tension
,”
ASME J. Appl. Mech.
,
84
(
5
), p.
051007
.
29.
Long
,
J.
,
Yuan
,
W.
,
Chen
,
W.
, and
Wang
,
G.
,
2018
, “
Analytic Relations for Two-Dimensional Indentations With Surface Tension
,”
Mech. Mater.
,
119
, pp.
34
41
.
30.
Pinyochotiwong
,
Y.
,
Rungamornrat
,
J.
, and
Senjuntichai
,
T.
,
2013
, “
Rigid Frictionless Indentation on Elastic Half Space With Influence of Surface Stresses
,”
Int. J. Eng. Sci.
,
71
, pp.
15
35
.
31.
Argatov
,
I.
,
2022
, “
The Surface Tension Effect Revealed via the Indentation Scaling Index
,”
Int. J. Eng. Sci.
,
170
, p.
103593
.
32.
Zhou
,
W.
, and
Yang
,
F.
,
2022
, “
Effects of Surface Stress on the Indentation Response of an Elastic Half-Space
,”
Int. J. Mech. Sci.
,
229
, p.
107512
.
33.
Xia
,
K.
,
Liu
,
C. F.
,
Leong
,
W. H.
,
Kwok
,
M. H.
,
Yang
,
Z. Y.
,
Feng
,
X.
,
Liu
,
R. B.
, and
Li
,
Q.
,
2019
, “
Nanometerprecision Non-Local Deformation Reconstruction Using Nanodiamond Sensing
,”
Nat. Commun.
,
10
(
1
), p.
3259
.
34.
Cheng
,
Z.
,
Shurer
,
C. R.
,
Schmidt
,
S.
,
Gupta
,
V. K.
,
Chuang
,
G.
,
Su
,
J.
,
Watkins
,
A. R.
, et al
,
2020
, “
The Surface Stress of Biomedical Silicones Is a Stimulant of Cellular Response
,”
Sci. Adv.
,
6
(
15
), p.
eaay0076
.
35.
Style
,
R. W.
,
Jagota
,
A.
,
Hui
,
C. Y.
, and
Dufresne
,
E. R.
,
2017
, “
Elastocapillarity: Surface Tension and the Mechanics of Soft Solids
,”
Annu. Rev. Condens. Matter Phys.
,
8
(
1
), pp.
99
118
.
36.
Kim
,
J. H.
, and
Gouldstone
,
A.
,
2008
, “
Spherical Indentation of a Membrane on an Elastic Half-Space
,”
J. Mater. Res.
,
23
(
8
), pp.
2212
2220
.
37.
Salez
,
T.
,
Benzaquen
,
M.
, and
Raphael
,
E.
,
2013
, “
From Adhesion to Wetting of a Soft Particle
,”
Soft Matter
,
9
(
45
), pp.
10699
10704
.
38.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2016
, “
Effects of Surface Tension on the Adhesive Contact Between a Hard Sphere and a Soft Substrate
,”
Int. J. Solids Struct.
,
84
, pp.
133
138
.
39.
Gao
,
X.
,
Hao
,
F.
,
Huang
,
Z. P.
, and
Fang
,
D. N.
,
2014
, “
Mechanics of Adhesive Contact at the Nanoscale: The Effect of Surface Stress
,”
Int. J. Solids Struct.
,
51
(
3–4
), pp.
566
574
.
40.
Hui
,
C. Y.
,
Liu
,
T. S.
,
Salez
,
T.
,
Raphael
,
E.
, and
Jagota
,
A.
,
2015
, “
Indentation of a Rigid Sphere Into an Elastic Substrate With Surface Tension and Adhesion
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
471
(
2175
), p.
20140727
.
41.
Zhang
,
L.
, and
Ru
,
C. Q.
,
2019
, “
A Refined JKR Model for Adhesion of a Rigid Sphere on a Soft Elastic Substrate
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051004
.
42.
Xu
,
X. J.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2014
, “
Effects of Surface Tension on the Adhesive Contact of a Rigid Sphere to a Compliant Substrate
,”
Soft Matter
,
10
(
26
), pp.
4625
4632
.
43.
Zhu
,
X. Y.
, and
Xu
,
W.
,
2018
, “
Effect of Surface Tension on the Behavior of Adhesive Contact Based on Lennard-Jones Potential law
,”
J. Mech. Phys. Solids
,
111
, pp.
170
183
.
44.
Jia
,
N.
,
Yao
,
Y.
,
Peng
,
Z.
, and
Chen
,
S.
,
2021
, “
Surface Effect in Nanoscale Adhesive Contact
,”
J. Adhesion
,
97
(
4
), pp.
380
398
.
45.
Zhu
,
X.
,
Xu
,
W.
, and
Qin
,
Y.
,
2020
, “
Effect of Surface Tension on the Behavior of Adhesive Contact Based on Maugis‒Dugdale Model
,”
Eur. J. Mech. A-Solid
,
81
, p.
103930
.
46.
Ciavarella
,
M.
,
2018
, “
An Approximate JKR Solution for a General Contact, Including Rough Contacts
,”
J. Mech. Phys. Solids
,
114
, pp.
209
218
.
47.
Popov
,
V. L.
,
2018
, “
Solution of Adhesive Contact Problem on the Basis of the Known Solution for Non-Adhesive One
,”
Facta Universitatis
,
16
(
1
), pp.
93
98
.
48.
Kendall
,
K.
,
1971
, “
The Adhesion and Surface Energy of Elastic Solids
,”
J. Phys. D Appl. Phys.
,
4
(
8
), pp.
1186
1195
.
49.
Liu
,
T.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2016
, “
Effect of Surface Tension on the Adhesion Between a Rigid Flat Punch and a Semi-Infinite Neo-Hookean Half-Space
,”
Extreme Mech. Lett.
,
9
, pp.
310
316
.
You do not currently have access to this content.