Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A general solution to harmonic excitation of beam-shaped specimens made from porous, fluid-saturated, transversely isotropic, and viscoelastic materials is developed and presented. The solution draws from Biot's theory of dynamic poroviscoelasticity and adopts a modification of Timoshenko beam model to account for the moment due to pore fluid pressure. Closed-form expressions for transverse displacement and rotation angle of the beam are obtained for the case of three-point bending experiments. Solutions for Rayleigh and Euler–Bernoulli beam models are recovered as special cases. Implications for possible characterization through relevant dynamic mechanical analysis testing are discussed for materials which exhibit certain anisotropy in both the mechanical and flow properties. Three timescale groups shape the dynamic response of the vibrating beam. These timescales pertain to energy dissipation rate within the solid phase, viscous flow of the pore fluid, as well as the natural frequencies of the test specimen. The interplay of a varying excitation frequency with the described timescales is shown to enable simultaneous characterization of the viscoelastic and poroelastic parameters of the specimen constitutive behavior through the obtained dynamic moduli and loss angles of beam vibrations.

References

1.
Record
,
S. J.
,
1914
,
The Mechanical Properties of Wood
, 1st ed.,
John Wiley & Sons
,
New York
.
2.
Carrington
,
H.
,
1921
, “
The Determination of Values of Young’s Modulus and Poisson’s Ratio by the Method of Flexures
,”
London Edinburgh Philos. Mag. J. Sci.
,
41
(
242
), pp.
206
210
.
3.
Griggs
,
D.
,
1939
, “
Creep of Rocks
,”
J. Geol.
,
47
(
3
), pp.
225
251
.
4.
Clouser
,
W. S.
,
1959
, “Creep of Small Wood Beams Under Constant Bending Load,” Report No. 2150, Forest Products Laboratory, United State Department of Agriculture.
5.
Singh
,
J. G.
, and
Upadhyay
,
P. C.
,
1987
, “
Creep Bending of Rock Beams
,”
Min. Sci. Technol.
,
5
(
2
), pp.
163
169
.
6.
ASTM C78/C78M-22
,
2022
,
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Third-Point Loading), 2022
,
ASTM International
,
West Conshohocken, PA
.
7.
ASTM D4440-15
,
2015
,
Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology
,
ASTM International
,
West Conshohocken, PA
.
8.
ASTM D6648-08
,
2016
,
Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer
,
West Conshohocken, PA
.
9.
Nowinski
,
J. L.
, and
Davis
,
C. F.
,
1972
, “
The Flexure and Torsion of Bones Viewed as Anisotropic Poroelastic Bodies
,”
Int. J. Eng. Sci.
,
10
(
12
), pp.
1063
1079
.
10.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
11.
Wang
,
Z. H.
,
Prévost
,
J. H.
, and
Coussy
,
O.
,
2009
, “
Bending of Fluid—Saturated Linear Poroelastic Beams With Compressible Constituents
,”
Int. J. Numer. Anal. Methods Geomech.
,
33
(
4
), pp.
425
447
.
12.
Zhang
,
D.
, and
Cowin
,
S. C.
,
1994
, “
Oscillatory Bending of a Poroelastic Beam
,”
J. Mech. Phys. Solids
,
42
(
10
), pp.
1575
1599
.
13.
Boutin
,
C.
,
2012
, “
Behavior of Poroelastic Isotropic Beam Derivation by Asymptotic Expansion Method
,”
J. Mech. Phys. Solids
,
60
(
6
), pp.
1063
1087
.
14.
Li
,
L. P.
,
Schulgasser
,
K.
, and
Cederbaum
,
G.
,
1997
, “
Buckling of Poroelastic Columns With Axial Diffusion
,”
Int. J. Mech. Sci.
,
39
(
4
), pp.
409
415
.
15.
Scherer
,
G. W.
,
Prévost
,
J. H.
, and
Wang
,
Z. H.
,
2009
, “
Bending of a Poroelastic Beam With Lateral Diffusion
,”
Int. J. Solids Struct.
,
46
(
18–19
), pp.
3451
3462
.
16.
Schanz
,
M.
, and
Cheng
,
A. D.
,
2000
, “
Transient Wave Propagation in a One-Dimensional Poroelastic Column
,”
Acta Mech.
,
145
(
1–4
), pp.
1
18
.
17.
Mehrabian
,
A.
, and
Liu
,
C.
,
2021
, “
Mandel’s Problem Reloaded
,”
J. Sound Vib.
,
492
, p.
115785
.
18.
Liu
,
C.
,
2023
, “
Analytical Simulation of the Elastic Moduli Dispersion for an Isotropic Porous Cylinder
,”
Appl. Math. Model.
,
120
, pp.
132
152
.
19.
Su
,
X.
, and
Mehrabian
,
A.
,
2022
, “
The Poroviscoelastodynamic Solution to Mandel’s Problem
,”
J. Sound Vib.
,
530
, p.
116987
.
20.
Li
,
L. P.
,
Schulgasser
,
K.
, and
Cederbaum
,
G.
,
1995
, “
Theory of Poroelastic Beams With Axial Diffusion
,”
J. Mech. Phys. Solids
,
43
(
12
), pp.
2023
2042
.
21.
Cederbaum
,
G.
,
Li
,
L.
,
Schulgasser
,
K.
,
2000
,
Poroelastic Structures
,
Elsevier
,
New York
.
22.
Theodorakopoulos
,
D. D.
, and
Beskos
,
D. E.
,
1994
, “
Flexural Vibrations of Poroelastic Plates
,”
Acta Mech.
,
103
(
1–4
), pp.
191
203
.
23.
Yang
,
X.
, and
Wen
,
Q.
,
2010
, “
Dynamic and Quasi-static Bending of Saturated Poroelastic Timoshenko Cantilever Beam
,”
Appl. Math. Mech.
,
31
(
8
), pp.
995
1008
.
24.
Kiani
,
K.
,
Avili
,
H. G.
, and
Kojorian
,
A. N.
,
2015
, “
On the Role of Shear Deformation in Dynamic Behavior of a Fully Saturated Poroelastic Beam Traversed by a Moving Load
,”
Int. J. Mech. Sci.
,
94
, pp.
84
95
.
25.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.
26.
Volterra
,
V.
,
1909
, “
Sulle Equazioni Integro-Differenziali Della Theoria Dell'elasticita
,”
Atti Reale Accademia Nazionale dei Lincei
,
18
, pp.
295
300
.
27.
Christensen
,
R.
,
2012
,
Theory of Viscoelasticity: An Introduction
,
Elsevier
,
New York
.
28.
Guo
,
J.
,
Liu
,
C.
, and
Abousleiman
,
Y. N.
,
2019
, “
Transversely Isotropic Poroviscoelastic Bending Beam Solutions for Low-Permeability Porous Medium
,”
Mech. Res. Commun.
,
95
, pp.
1
7
.
29.
Menard
,
K. P.
, and
Menard
,
N. R.
,
2002
, “Dynamic Mechanical Analysis in the Analysis of Polymers and Rubbers,”
Encyclopedia of Polymer Science and Technology
,
H.
Mark
, and
A.
Seidel
, eds.,
Wiley
,
New York
, pp.
1
33
.
30.
Scherer
,
G. W.
,
2004
, “
Measuring Permeability of Rigid Materials by a Beam-Bending Method: IV, Transversely Isotropic Plate
,”
J. Am. Ceram. Soc.
,
87
(
8
), pp.
1517
1524
.
31.
Zargar
,
O.
,
Pharr
,
M.
, and
Muliana
,
A.
,
2022
, “
Modeling and Simulation of Creep Response of Sorghum Stems: Towards an Understanding of Stem Geometrical and Material Variations
,”
Biosyst. Eng.
,
217
, pp.
1
17
.
32.
Chakraborty
,
A.
,
2009
, “
Wave Propagation in Anisotropic Poroelastic Beam With Axial–Flexural Coupling
,”
Comput. Mech.
,
43
(
6
), pp.
755
767
.
33.
Hoang
,
S. K.
, and
Abousleiman
,
Y. N.
,
2012
, “
Correspondence Principle Between Anisotropic Poroviscoelasticity and Poroelasticity Using Micromechanics and Application to Compression of Orthotropic Rectangular Strips
,”
J. Appl. Phys.
,
112
(
4
), p.
044907
.
34.
Rao
,
S. S.
,
2019
,
Vibration of Continuous Systems
, Second ed.,
John Wiley & Sons
,
Hoboken, NJ
.
35.
Hutchinson
,
J. R.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
87
92
.
36.
Kohles
,
S. S.
,
Roberts
,
J. B.
,
Upton
,
M. L.
,
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Schlichting
,
A. L.
,
2001
, “
Direct Perfusion Measurements of Cancellous Bone Anisotropic Permeability
,”
J. Biomech.
,
34
(
9
), pp.
1197
1202
.
37.
Gibson
,
L. J.
,
2012
, “
The Hierarchical Structure and Mechanics of Plant Materials
,”
J. R. Soc. Interface
,
9
(
76
), pp.
2749
2766
.
38.
Vichit-Vadakan
,
W.
, and
Scherer
,
G. W.
,
2000
, “
Measuring Permeability of Rigid Materials by a Beam-Bending Method: II, Porous Glass
,”
J. Am. Ceram. Soc.
,
83
(
9
), pp.
2240
2246
.
39.
Zener
,
C. M.
, and
Siegel
,
S.
,
1949
, “
Elasticity and Anelasticity of Metals
,”
J. Phys. Chem.
,
53
(
9
), pp.
1468
1468
.
40.
Theocaris
,
P. S.
,
1969
, “
Interrelation Between Dynamic Moduli and Compliances in Polymers
,”
Kolloid Z. Z. Für. Polym.
,
235
(
1
), pp.
1182
1188
.
41.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2011
, “
General Solutions to Poroviscoelastic Model of Hydrocephalic Human Brain Tissue
,”
J. Theor. Biol.
,
291
, pp.
105
118
.
42.
Mehrabian
,
A.
,
Abousleiman
,
Y. N.
,
Mapstone
,
T. B.
, and
El-Amm
,
C. A.
,
2015
, “
Dual-Porosity Poroviscoelasticity and Quantitative Hydromechanical Characterization of the Brain Tissue With Experimental Hydrocephalus Data
,”
J. Theor. Biol.
,
384
, pp.
19
32
.
43.
Sonin
,
A. A.
,
2004
, “
A Generalization of the Π-Theorem and Dimensional Analysis
,”
Proc. Natl. Acad. Sci. USA
,
101
(
23
), pp.
8525
8526
.
44.
Dolph
,
C. L.
,
1954
, “
On the Timoshenko Theory of Transverse Beam Vibrations
,”
Q. Appl. Math.
,
12
(
2
), pp.
175
187
.
45.
Spatz
,
H. C.
,
Beismann
,
H.
,
Brüchert
,
F.
,
Emanns
,
A.
, and
Speck
,
T.
,
1997
, “
Biomechanics of the Giant Reed Arundo Donax
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
,
352
(
1349
), pp.
1
10
.
46.
Cataldo
,
E.
,
Di Lorenzo
,
S.
,
Fiore
,
V.
,
Maurici
,
M.
,
Nicoletti
,
F.
,
Pirrotta
,
A.
,
Scaffaro
,
R.
, and
Valenza
,
A.
,
2015
, “
Bending Test for Capturing the Vivid Behavior of Giant Reeds, Returned Through a Proper Fractional Visco-elastic Model
,”
Mech. Mater.
,
89
, pp.
159
168
.
47.
Banks
,
H. T.
,
Hu
,
S.
, and
Kenz
,
Z. R.
,
2011
, “
A Brief Review of Elasticity and Viscoelasticity for Solids
,”
Adv. Appl. Math. Mech.
,
3
(
1
), pp.
1
51
.
You do not currently have access to this content.