Abstract

Flexible batteries are gaining momentum in several fields, including wearable medical devices and biomedical sensors, flexible displays, and smartwatches. These energy storage devices are subjected to electro-chemo-mechanical effects. Here, we present a theoretical framework that couples diffusion and electromechanical theory with flexoelectricity. As an example, we investigate the effect of flexoelectricity on the ionic conductivity in soft materials. Our analytical results for a thin film made of a soft material reveal that the ionic conductivity is significantly higher at the nanoscale and decreases exponentially to approach the bulk value with increasing film thickness. Furthermore, we find that flexoelectricity reduces the ionic conductivity dramatically at film thickness smaller than the length scale associated with flexoelectricity. This behavior is attributed to the opposite directions of polarization induced by flexoelectricity and the flow of ions driven by the chemical potential. These findings shed light on the interplay between flexoelectricity and diffusion which would be paramount in designing miniaturized energy storage devices.

References

1.
Zito
,
R.
, and
Ardebili
,
H.
,
2019
,
Energy Storage: A New Approach
,
Wiley-Scrivener
,
Beverly
, CA.
2.
Lukatskaya
,
M. R.
,
Dunn
,
B.
, and
Gogotsi
,
Y.
,
2016
, “
Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage
,”
Nat. Commun.
,
7
(
1
), p.
12647
.
3.
Park
,
S.
,
Heo
,
S. W.
,
Lee
,
W.
,
Inoue
,
D.
,
Jiang
,
Z.
,
Yu
,
K.
,
Jinno
,
H.
, et al.,
2018
, “
Self-Powered Ultra-Flexible Electronics Via Nano-Grating-Patterned Organic Photovoltaics
,”
Nature
,
561
(
7724
), pp.
516
521
.
4.
Yang
,
Y.
,
2020
, “
A Mini-review: Emerging All-Solid-State Energy Storage Electrode Materials for Flexible Devices
,”
Nanoscale
,
12
(
6
), pp.
3560
3573
.
5.
Di Leo
,
C. V.
,
Rejovitzky
,
E.
, and
Anand
,
L.
,
2014
, “
A Cahn-Hilliard-Type Phase-Field Theory for Species Diffusion Coupled With Large Elastic Deformations: Application to Phase-Separating Li-Ion Electrode Materials
,”
J. Mech. Phys. Solids
,
70
(
Oct.
), pp.
1
29
.
6.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
, pp.
5062
5066
.
7.
Bower
,
A.
,
Guduru
,
P.
, and
Sethuraman
,
V.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
.
8.
Gao
,
F.
, and
Hong
,
W.
,
2016
, “
Phase-Field Model for the Two-Phase Lithiation of Silicon
,”
J. Mech. Phys. Solids
,
94
, pp.
18
32
.
9.
Pharr
,
M.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2013
, “
Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries
,”
Nano Lett.
,
13
(
11
), pp.
5570
5577
.
10.
Mendez
,
J.
,
Ponga
,
M.
, and
Ortiz
,
M.
,
2018
, “
Diffusive Molecular Dynamics Simulations of Lithiation of Silicon Nanopillars
,”
J. Mech. Phys. Solids
,
115
, pp.
123
141
.
11.
Xu
,
S.
,
Zhang
,
Y.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
,
Fan
,
J. A.
, et al.,
2013
, “
Stretchable Batteries With Self-similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
(
1
), p.
1543
.
12.
Kammoun
,
M.
,
Berg
,
S.
, and
Ardebili
,
H.
,
2015
, “
Flexible Thin-Film Battery Based on Graphene-Oxide Embedded in Solid Polymer Electrolyte
,”
Nanoscale
,
7
, pp.
17516
17522
.
13.
Ganser
,
M.
,
Hildebrand
,
F. E.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2019
, “
A Finite Strain Electro-Chemo-Mechanical Theory for Ion Transport With Application to Binary Solid Electrolytes
,”
J. Mech. Phys. Solids
,
125
, pp.
681
713
.
14.
Deshpande
,
V. S.
, and
McMeeking
,
R. M.
,
2023
, “
Models for the Interplay of Mechanics, Electrochemistry, Thermodynamics, and Kinetics in Lithium-Ion Batteries
,”
Appl. Mech. Rev.
,
75
(
1
), p.
010801
.
15.
Winter
,
M.
, and
Brodd
,
R. J.
,
2004
, “
What Are Batteries, Fuel Cells, and Supercapacitors
?”
Chem. Rev.
,
104
(
10
), pp.
4245
4270
.
16.
Goodenough
,
J. B.
, and
Park
,
K.-S.
,
2013
, “
The Li-Ion Rechargeable Battery: A Perspective
,”
J. Am. Chem. Soc.
,
135
(
4
), pp.
1167
1176
.
17.
Yang
,
H.
, and
Wu
,
N.
,
2022
, “
Ionic Conductivity and Ion Transport Mechanisms of Solid-State Lithium-Ion Battery Electrolytes: A Review
,”
Energy Sci. Eng.
,
10
(
5
), pp.
1643
1671
.
18.
Manthiram
,
A.
,
Yu
,
X.
, and
Wang
,
S.
,
2017
, “
Lithium Battery Chemistries Enabled by Solid-State Electrolytes
,”
Nat. Rev. Mater.
,
2
(
4
), pp.
1
16
.
19.
Li
,
C.
,
Wang
,
Z.-Y.
,
He
,
Z.-J.
,
Li
,
Y.-J.
,
Mao
,
J.
,
Dai
,
K.-H.
,
Yan
,
C.
, and
Zheng
,
J.-C.
,
2021
, “
An Advance Review of Solid-State Battery: Challenges, Progress and Prospects
,”
Sustain. Mater. Technol.
,
29
, p.
e00297
.
20.
Koyama
,
Y.
,
Chin
,
T. E.
,
Rhyner
,
U.
,
Holman
,
R. K.
,
Hall
,
S. R.
, and
Chiang
,
Y.-M.
,
2006
, “
Harnessing the Actuation Potential of Solid-State Intercalation Compounds
,”
Adv. Funct. Mater.
,
16
(
4
), pp.
492
498
.
21.
Liu
,
L.
,
Xu
,
J.
,
Wang
,
S.
,
Wu
,
F.
,
Li
,
H.
, and
Chen
,
L.
,
2019
, “
Practical Evaluation of Energy Densities for Sulfide Solid-State Batteries
,”
ETransportation
,
1
, p.
100010
.
22.
Rui
,
X.
,
Ren
,
D.
,
Liu
,
X.
,
Wang
,
X.
,
Wang
,
K.
,
Lu
,
Y.
,
Li
,
L.
, et al.,
2023
, “
Distinct Thermal Runaway Mechanisms of Sulfide-Based All-Solid-State Batteries
,”
Energy Environ. Sci.
,
16
(
8
), pp.
3552
3563
.
23.
Kezuka
,
K.
,
Hatazawa
,
T.
, and
Nakajima
,
K.
,
2001
, “
The Status of Sony Li-Ion Polymer Battery
,”
J. Power Sources
,
97
, pp.
755
757
.
24.
Yu
,
Z.
,
Zhang
,
X.
,
Fu
,
C.
,
Wang
,
H.
,
Chen
,
M.
,
Yin
,
G.
,
Huo
,
H.
, and
Wang
,
J.
,
2021
, “
Dendrites in Solid-State Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation
,”
Adv. Energy Mater.
,
11
(
18
), p.
2003250
.
25.
Ardebili
,
H.
,
2019
, “
A Perspective on the Mechanics Issues in Soft Solid Electrolytes and the Development of Next-Generation Batteries
,”
J. Appl. Mech.
,
87
(
Nov.
), p.
040801
.
26.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
J. Appl. Mech.
,
83
(
3
), p.
030801
.
27.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
28.
Chu
,
B.
, and
Salem
,
D.
,
2012
, “
Flexoelectricity in Several Thermoplastic and Thermosetting Polymers
,”
Appl. Phys. Lett.
,
101
(
10
), p.
103905
.
29.
Grasinger
,
M.
,
Mozaffari
,
K.
, and
Sharma
,
P.
,
2021
, “
Flexoelectricity in Soft Elastomers and the Molecular Mechanisms Underpinning the Design and Emergence of Giant Flexoelectricity
,”
Proc. Natl. Acad. Sci. USA
,
118
(
21
), p.
e2102477118
.
30.
Petrov
,
A. G.
,
2002
, “
Flexoelectricity of Model and Living Membranes
,”
Biochim. Biophys. Acta–Biomembr.
,
1561
(
1
), pp.
1
25
.
31.
Petrov
,
A.
,
1984
, “
Flexoelectricity of Lyotropics and Biomembranes
,”
Il Nuovo Cimento D
,
3
, pp.
174
192
.
32.
Liu
,
L. P.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties
,”
Phys. Rev. E
,
87
, p.
032715
.
33.
Mohammadi
,
P.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
A Theory of Flexoelectric Membranes and Effective Properties of Heterogeneous Membranes
,”
J. Appl. Mech.
,
81
(
1
), p.
011007
.
34.
Torbati
,
M.
,
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2022
, “
Coupling of Mechanical Deformation and Electromagnetic Fields in Biological Cells
,”
Rev. Mod. Phys.
,
94
(
May
), p.
025003
.
35.
Mozaffari
,
K.
,
Ahmadpoor
,
F.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2023
, “
A Minimal Physics-Based Model for Musical Perception
,”
Proc. Natl. Acad. Sci. USA
,
120
(
5
), p.
e2216146120
.
36.
Buka
,
A.
, and
Éber
,
N.
,
2013
,
Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications
,
Imperial College Press
,
London
.
37.
Meyer
,
R. B.
,
1969
, “
Piezoelectric Effects in Liquid Crystals
,”
Phys. Rev. Lett.
,
22
(
18
), p.
918
.
38.
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2022
, “
Theory of Soft Solid Electrolytes: Overall Properties of Composite Electrolytes, Effect of Deformation and Microstructural Design for Enhanced Ionic Conductivity
,”
J. Mech. Phys. Solids
,
158
, p.
104621
.
39.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2017
, “A Continuum Theory of Flexoelectricity,”
Flexoelectricity in Solids: From Theory to Applications
,
A. K.
Tagantsev
and
P. V.
Yudin
, eds.,
World Scientific
,
Hackensack, NJ
, pp.
111
167
.
40.
Anand
,
L.
,
2012
, “
A Cahn–Hilliard-Type Theory for Species Diffusion Coupled With Large Elastic–Plastic Deformations
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
1983
2002
.
41.
Darbaniyan
,
F.
,
Dayal
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2019
, “
Designing Soft Pyroelectric and Electrocaloric Materials Using Electrets
,”
Soft Matter
,
15
(
2
), pp.
262
277
.
42.
Mindlin
,
R. D.
,
1968
, “
Polarization Gradient in Elastic Dielectrics
,”
Int. J. Solids Struct
,
4
(
6
), pp.
637
642
.
43.
Zheng
,
Q.
, and
Wei
,
G.-W.
,
2011
, “
Poisson–Boltzmann–Nernst–Planck Model
,”
J. Chem. Phys.
,
134
(
19
), p.
194101
.
44.
W. R. Inc.
,
2023
, “Mathematica, Version 13.3,” Champaign, IL.
45.
Sharma
,
N.
,
Landis
,
C.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(
2
), p.
024304
.
46.
Guney
,
H. Y.
,
2005
, “
Elastic Properties and Mechanical Relaxation Behaviors of PVDF (Poly (Vinylidene Fluoride)) at Temperatures Between 20 and 100 °C and at 2 MHz Ultrasonic Frequency
,”
J. Polym. Sci. Part B: Polym. Phys.
,
43
(
20
), pp.
2862
2873
.
47.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
You do not currently have access to this content.