Abstract

This article presents an elastic-gap free isotropic higher-order strain gradient plasticity theory that effectively captures dissipation associated to plastic strain gradients. Unlike conventional methods that divide the higher-order stress, this theory focuses on dividing the plastic strain gradient into energetic and dissipative components. The moment stress that arises from minimizing a dissipating potential demonstrates a nonlinear evolution over time, resembling the Armstrong–Frederick nonlinear kinematic hardening rule in classical plasticity. The thermodynamically consistent framework establishes additional dissipation in the dissipation inequality. The energetic moment stress saturates as the effective plastic strain increases during plastic flow. In contrast to the Gurtin-type nonincremental model, the proposed model smoothly captures the apparent strengthening at saturation without causing a stress jump. A passivated shear layer is analytically assessed to demonstrate that the proposed theory exhibits the same amount of dissipation as the existing Gurtin-type model when they show similar shear responses at saturation. It is also shown that the plastic flow remains continuous under nonproportional loading conditions using an intermediately passivated shear layer problem. Finally, the proposed theory is validated against a recent experiment involving combined bending torsion of an L-shaped beam using a 3D finite element solution. Overall, the proposed model provides an alternative approach to evaluating the size effect within the nonincremental isotropic strain gradient plasticity theory without introducing any stress jump.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fleck
,
N.
,
Muller
,
G.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta. Metall. Mater.
,
42
(
2
), pp.
475
487
.
2.
Pharr
,
G. M.
,
Herbert
,
E. G.
, and
Gao
,
Y.
,
2010
, “
The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
271
292
.
3.
Liu
,
D.
,
He
,
Y.
,
Tang
,
X.
,
Ding
,
H.
,
Hu
,
P.
, and
Cao
,
P.
,
2012
, “
Size Effects in the Torsion of Microscale Copper Wires: Experiment and Analysis
,”
Scr. Mater.
,
66
(
6
), pp.
406
409
.
4.
Abu Al-Rub
,
R. K.
, and
Voyiadjis
,
G. Z.
,
2004
, “
Analytical and Experimental Determination of the Material Intrinsic Length Scale of Strain Gradient Plasticity Theory From Micro- and Nano Indentation Experiments
,”
Int. J. Plast.
,
20
(
6
), pp.
1139
1182
.
5.
Xiang
,
Y.
, and
Vlassak
,
J.
,
2006
, “
Bauschinger and Size Effects in Thin-Film Plasticity
,”
Acta. Mater.
,
54
(
20
), pp.
5449
5460
.
6.
Mu
,
Y.
,
Hutchinson
,
J.
, and
Meng
,
W.
,
2014
, “
Micro-Pillar Measurements of Plasticity in Confined Cu Thin Films
,”
Extreme Mech. Lett.
,
1
, pp.
62
69
.
7.
Kreins
,
M.
,
Schilli
,
S.
,
Seifert
,
T.
,
Iyer
,
A.
,
Colliander
,
M.
,
Wesselmecking
,
S.
, and
Krupp
,
U.
,
2021
, “
Bauschinger Effect and Latent Hardening Under Cyclic Micro-bending of Ni-base Alloy 718 Single Crystals: Part I. Experimental Analysis of Single and Multi Slip Plasticity
,”
Mater. Sci. Eng. A.
,
827
, p.
142027
.
8.
Zhang
,
B.
,
Nielsen
,
K.
,
Hutchinson
,
J.
, and
Meng
,
W.
,
2023
, “
Toward the Development of Plasticity Theories for Application to Small-Scale Metal Structures
,”
Proc. Natl. Acad. Sci. USA
,
120
(
44
), p.
e2312538120
.
9.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.
10.
Mühlhaus
,
H.-B.
, and
Alfantis
,
E.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids. Struct.
,
28
(
7
), pp.
845
857
.
11.
Acharya
,
A.
, and
Bassani
,
J.
,
1996
, “
On Non-local Flow Theories That Preserve the Classical Structure of Incremental Boundary Value Problems
,” IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials: Proceedings of the IUTAM Symposium held in Sèvres, Paris, France, Aug. 29–Sept. 1, pp.
3
9
.
12.
Acharya
,
A.
, and
Bassani
,
J.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids.
,
48
(
8
), pp.
1565
1595
.
13.
Bassani
,
J.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
Plastic Flow in a Composite: A Comparison of Nonlocal Continuum and Discrete Dislocation Predictions
,”
Int. J. Solids. Struct.
,
38
(
5
), pp.
833
853
.
14.
Niordson
,
C. F.
, and
Hutchinson
,
J. W.
,
2003
, “
On Lower Order Strain Gradient Plasticity Theories
,”
Eur. J. Mech. A/Solids
,
22
(
6
), pp.
771
778
.
15.
Gudmundson
,
P.
,
2004
, “
A Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids.
,
52
(
6
), pp.
1379
1406
.
16.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids.
,
46
(
3
), pp.
411
425
.
17.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W.
, and
Hutchinson
,
J.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids.
,
47
(
6
), pp.
1239
1263
.
18.
Huang
,
Y.
,
Zhang
,
F.
,
Hwang
,
K.
,
Nix
,
W.
,
Pharr
,
G.
, and
Feng
,
G.
,
2006
, “
A Model of Size Effects in Nano-indentation
,”
J. Mech. Phys. Solids.
,
54
(
8
), pp.
1668
1686
.
19.
Fleck
,
N.
, and
Hutchinson
,
J.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids.
,
41
(
12
), pp.
1825
1857
.
20.
Fleck
,
N.
, and
Hutchinson
,
J.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids.
,
49
(
10
), pp.
2245
2271
.
21.
Gurtin
,
M. E.
,
2002
, “
A Gradient Theory of Single-Crystal Viscoplasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids.
,
50
(
1
), pp.
5
32
.
22.
Gurtin
,
M. E.
,
2004
, “
A Gradient Theory of Small-Deformation Isotropic Plasticity That Accounts for the Burgers Vector and for Dissipation Due to Plastic Spin
,”
J. Mech. Phys. Solids.
,
52
(
11
), pp.
2545
2568
.
23.
Fleck
,
N.
, and
Willis
,
J.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory–Part I: Scalar Plastic Multiplier
,”
J. Mech. Phys. Solids.
,
57
(
1
), pp.
161
177
.
24.
Fleck
,
N.
, and
Willis
,
J.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory. Part II: Tensorial Plastic Multiplier
,”
J. Mech. Phys. Solids.
,
57
(
7
), pp.
1045
1057
.
25.
Forest
,
S.
,
2009
, “
Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage
,”
J. Eng. Mech.
,
135
(
3
), pp.
117
131
.
26.
Niordson
,
C. F.
, and
Legarth
,
B. N.
,
2010
, “
Strain Gradient Effects on Cyclic Plasticity
,”
J. Mech. Phys. Solids.
,
58
(
4
), pp.
542
557
.
27.
Hutchinson
,
J. W.
,
2012
, “
Generalizing J 2 Flow Theory: Fundamental Issues in Strain Gradient Plasticity
,”
Acta. Mech. Sin.
,
28
(
4
), pp.
1078
1086
.
28.
Nielsen
,
K. L.
, and
Niordson
,
C. F.
,
2014
, “
A Numerical Basis for Strain-Gradient Plasticity Theory: Rate-Independent and Rate-Dependent Formulations
,”
J. Mech. Phys. Solids.
,
63
, pp.
113
127
.
29.
Jebahi
,
M.
, and
Forest
,
S.
,
2021
, “
Scalar-Based Strain Gradient Plasticity Theory to Model Size-Dependent Kinematic Hardening Effects
,”
Continuum Mech. Thermodyn.
,
33
(
4
), pp.
1223
1245
.
30.
Bardella
,
L.
,
2010
, “
Size Effects in Phenomenological Strain Gradient Plasticity Constitutively Involving the Plastic Spin
,”
Int. J. Eng. Sci.
,
48
(
5
), pp.
550
568
.
31.
Fleck
,
N.
,
Hutchinson
,
J.
, and
Willis
,
J.
,
2014
, “
Strain Gradient Plasticity Under Non-proportional Loading
,”
Proc. Royal Soc. A: Math. Phys. Eng. Sci.
,
470
(
2170
), p.
20140267
.
32.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part I: Small Deformations
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1624
1649
.
33.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2005
, “
Size-Dependent Yield Strength of Thin Films
,”
Int. J. Plast.
,
21
(
9
), pp.
1834
1854
.
34.
Bardella
,
L.
, and
Panteghini
,
A.
,
2015
, “
Modelling the Torsion of Thin Metal Wires by Distortion Gradient Plasticity
,”
J. Mech. Phys. Solids.
,
78
, pp.
467
492
.
35.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
Thermo-Mechanical Strain Gradient Plasticity With Energetic and Dissipative Length Scales
,”
Int. J. Plast.
,
30–31
, pp.
218
247
.
36.
Martínez-Pañeda
,
E.
,
Deshpande
,
V. S.
,
Niordson
,
C. F.
, and
Fleck
,
N. A.
,
2019
, “
The Role of Plastic Strain Gradients in the Crack Growth Resistance of Metals
,”
J. Mech. Phys. Solids.
,
126
, pp.
136
150
.
37.
Hua
,
F.
,
Liu
,
D.
,
Li
,
Y.
,
He
,
Y.
, and
Dunstan
,
D.
,
2021
, “
On Energetic and Dissipative Gradient Effects Within Higher-Order Strain Gradient Plasticity: Size Effect, Passivation Effect, and Bauschinger Effect
,”
Int. J. Plasticity
,
141
, p.
102994
.
38.
Faleskog
,
J.
, and
Gudmundson
,
P.
,
2021
, “
Analytical Predictions of Yield Stress of a Strain Gradient Plasticity Material Reinforced by Small Elastic Particles
,”
J. Mech. Phys. Solids.
,
157
, p.
104623
.
39.
Luo
,
T.
,
Hua
,
F.
, and
Liu
,
D.
,
2022
, “
Modeling of Cyclic Bending of Thin Foils Using Higher-Order Strain Gradient Plasticity
,”
Acta Mech. Solida Sinica
,
35
(
4
), pp.
616
631
.
40.
Fleck
,
N.
,
Hutchinson
,
J.
, and
Willis
,
J.
,
2015
, “
Guidelines for Constructing Strain Gradient Plasticity Theories
,”
J. Appl. Mech.
,
82
(
7
), p.
071002
.
41.
Guha
,
S.
,
Sangal
,
S.
, and
Basu
,
S.
,
2015
, “
A Review of Higher Order Strain Gradient Theories of Plasticity: Origins, Thermodynamics and Connections With Dislocation Mechanics
,”
Sadhana
,
40
(
4
), pp.
1205
1240
.
42.
Voyiadjis
,
G. Z.
, and
Song
,
Y.
,
2019
, “
Strain Gradient Continuum Plasticity Theories: Theoretical, Numerical and Experimental Investigations
,”
Int. J. Plasticity
,
121
, pp.
21
75
.
43.
Motz
,
C.
,
Schöberl
,
T.
, and
Pippan
,
R.
,
2005
, “
Mechanical Properties of Micro-Sized Copper Bending Beams Machined by the Focused Ion Beam Technique
,”
Acta. Mater.
,
53
(
15
), pp.
4269
4279
.
44.
Gurtin
,
M. E.
,
2000
, “
On the Plasticity of Single Crystals: Free Energy, Microforces, Plastic-Strain Gradients
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
989
1036
.
45.
Amouzou-Adoun
,
Y. A.
,
Jebahi
,
M.
,
Fivel
,
M.
,
Forest
,
S.
,
Lecomte
,
J. -S.
,
Schuman
,
C.
, and
Abed-Meraim
,
F.
,
2023
, “
On Elastic Gaps in Strain Gradient Plasticity: 3D Discrete Dislocation Dynamics Investigation
,”
Acta. Mater.
,
252
, p.
118920
.
46.
Kuroda
,
M.
, and
Needleman
,
A.
,
2023
, “
Non-Quadratic Strain Gradient Plasticity Theory and Size Effects in Constrained Shear
,”
ASME J. Appl. Mech.
,
90
(
12
), p.
121004
.
47.
Jebahi
,
M.
,
Cai
,
L.
, and
Abed-Meraim
,
F.
,
2020
, “
Strain Gradient Crystal Plasticity Model Based on Generalized Non-quadratic Defect Energy and Uncoupled Dissipation
,”
Int. J. Plast.
,
126
, p.
102617
.
48.
Panteghini
,
A.
,
Bardella
,
L.
, and
Niordson
,
C. F.
,
2019
, “
A Potential for Higher-Order Phenomenological Strain Gradient Plasticity to Predict Reliable Response Under Non-proportional Loading
,”
Proc. Royal Soc. A: Math. Phys. Eng. Sci.
,
475
(
2229
), p.
20190258
.
49.
Bardella
,
L.
,
2021
, “
On a Mixed Energetic–Dissipative Constitutive Law for Non-proportional Loading, With Focus on Small-Scale Plasticity
,”
Proc. Royal Soc. A: Math. Phys. Eng. Sci.
,
477
(
2248
), p.
20200940
.
50.
Jebahi
,
M.
, and
Forest
,
S.
,
2023
, “
An Alternative Way to Describe Thermodynamically-Consistent Higher-Order Dissipation Within Strain Gradient Plasticity
,”
J. Mech. Phys. Solids.
,
170
, p.
105103
.
51.
Dahlberg
,
C. F.
, and
Faleskog
,
J.
,
2013
, “
An Improved Strain Gradient Plasticity Formulation With Energetic Interfaces: Theory and a Fully Implicit Finite Element Formulation
,”
Comput. Mech.
,
51
(
5
), pp.
641
659
.
52.
Voyiadjis
,
G. Z.
, and
Song
,
Y.
,
2017
, “
Effect of Passivation on Higher Order Gradient Plasticity Models for Non-proportional Loading: Energetic and Dissipative Gradient Components
,”
Philos. Mag.
,
97
(
5
), pp.
318
345
.
53.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
Cambridge
.
54.
Dettmer
,
W.
, and
Reese
,
S.
,
2004
, “
On the Theoretical and Numerical Modelling of Armstrong–Frederick Kinematic Hardening in the Finite Strain Regime
,”
Comput. Methods. Appl. Mech. Eng.
,
193
(
1–2
), pp.
87
116
.
55.
Chaboche
,
J.-L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.
56.
Mukherjee
,
A.
, and
Banerjee
,
B.
,
2023
, “
Strain Gradient Plasticity With Nonlinear Evolutionary Energetic Higher Order Stresses
,”
Int. J. Plast.
,
169
, p.
103739
.
57.
Armstrong
,
P. J.
, and
Frederick
,
C.
,
1966
,
A Mathematical Representation of the Multiaxial Bauschinger Effect
, Vol.
731
,
Berkeley Nuclear Laboratories
,
Berkeley, CA
.
58.
Khelfa
,
T.
,
Munoz-Bolanos
,
J.-A.
,
Li
,
F.
,
Cabrera-Marrero
,
J.-M.
, and
Khitouni
,
M.
,
2021
, “
Strain-Hardening Behavior in an AA6060-T6 Alloy Processed by Equal Channel Angular Pressing
,”
Adv. Eng. Mater.
,
23
(
1
), p.
2000730
.
59.
Zhang
,
X.
,
Zhao
,
J.
,
Kang
,
G.
, and
Zaiser
,
M.
,
2023
, “
Geometrically Necessary Dislocations and Related Kinematic Hardening in Gradient Grained Materials: A Nonlocal Crystal Plasticity Study
,”
Int. J. Plast.
,
163
, p.
103553
.
60.
Chaboche
,
J.-L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
(
3
), pp.
247
302
.
61.
Mukherjee
,
A.
, and
Banerjee
,
B.
,
2024
, “
Torsional Response of Microwires Using Multi-term Nonlinear Kinematic Hardening Model Within Strain Gradient Plasticity Framework
,”
Eur. J. Mech. A/Solids
.
62.
Anand
,
L.
,
Gurtin
,
M.
,
Lele
,
S.
, and
Gething
,
C.
,
2005
, “
A One-Dimensional Theory of Strain-Gradient Plasticity: Formulation, Analysis, Numerical Results
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1789
1826
.
63.
Panteghini
,
A.
, and
Bardella
,
L.
,
2016
, “
On the Finite Element Implementation of Higher-Order Gradient Plasticity, With Focus on Theories Based on Plastic Distortion Incompatibility
,”
Computer Methods Appl. Mech. Eng.
,
310
, pp.
840
865
.
64.
Systemes
,
Dassault
,
2013
,
ABAQUS User’s & Theory Manuals—Release 6.13-1, Providence, RI
.
65.
Dahlberg
,
C. F.
, and
Boåsen
,
M.
,
2019
, “
Evolution of the length scale in strain gradient plasticity
,”
Int. J. Plast.
,
112
, pp.
220
241
.
You do not currently have access to this content.