Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Mechanical interactions between rigid rings and flexible cables find broad application in both daily life (hanging clothes) and engineering system (closing a tether-net). A reduced-order method for the dynamic analysis of sliding rings on a deformable one-dimensional (1D) rod-like object is proposed. In contrast to the conventional approach of discretizing joint rings into multiple nodes and edges for contact detection and numerical simulation, a single point is used to reduce the order of the model. To ensure that the sliding ring and flexible rod do not deviate from their desired positions, a new barrier function is formulated using the incremental potential theory. Subsequently, the interaction between tangent frictional forces is obtained through a delayed dissipative approach. The proposed barrier functional and the associated frictional functional are C2 continuous, hence the nonlinear elastodynamic system can be solved variationally by an implicit time-stepping scheme. The numerical framework is initially applied to simple examples where the analytical solutions are available for validation. Then, multiple complex practical engineering examples are considered to showcase the effectiveness of the proposed method. The simplified ring-to-rod interaction model has the capacity to enhance the realism of visual effects in image animations, while simultaneously facilitating the optimization of designs for space debris removal systems.

References

1.
Mote Jr
,
C.
,
1966
, “
On the Nonlinear Oscillation of an Axially Moving String
,”
J. Appl. Mech.
,
33
(
2
), pp.
463
464
.
2.
Tabarrok
,
B.
,
Leech
,
C.
, and
Kim
,
Y.
,
1974
, “
On the Dynamics of an Axially Moving Beam
,”
J. Franklin Inst.
,
297
(
3
), pp.
201
220
.
3.
Wickert
,
J.
,
1992
, “
Non-linear Vibration of a Traveling Tensioned Beam
,”
Int. J. Non-Linear Mech.
,
27
(
3
), pp.
503
517
.
4.
Zheng
,
X.
,
Yang
,
T.
,
Chen
,
Z.
,
Wang
,
X.
,
Liang
,
B.
, and
Liao
,
Q.
,
2022
, “
Ale Formulation for Dynamic Modeling and Simulation of Cable-Driven Mechanisms Considering Stick–Slip Frictions
,”
Mech. Syst. Signal Process.
,
168
, p.
108633
.
5.
Tonoli
,
A.
,
Zenerino
,
E.
, and
Amati
,
N.
,
2014
, “
Modeling the Flexural Dynamic Behavior of Axially Moving Continua by Using the Finite Element Method
,”
J. Vib. Acoust.
,
136
(
1
), p.
011012
.
6.
Fu
,
K.
,
Zhao
,
Z.
,
Ren
,
G.
,
Xiao
,
Y.
,
Feng
,
T.
,
Yang
,
J.
, and
Gasbarri
,
P.
,
2019
, “
From Multiscale Modeling to Design of Synchronization Mechanisms in Mesh Antennas
,”
Acta Astronaut.
,
159
, pp.
156
165
.
7.
Vetyukov
,
Y.
,
Oborin
,
E.
,
Scheidl
,
J.
,
Krommer
,
M.
, and
Schmidrathner
,
C.
,
2019
, “
Flexible Belt Hanging on Two Pulleys: Contact Problem at Non-material Kinematic Description
,”
Int. J. Solids Struct.
,
168
, pp.
183
193
.
8.
Ma
,
S.
,
Liang
,
B.
, and
Wang
,
T.
,
2020
, “
Dynamic Analysis of a Hyper-redundant Space Manipulator With a Complex Rope Network
,”
Aerosp. Sci. Technol.
,
100
, p.
105768
.
9.
Xu
,
W.
,
Liu
,
T.
, and
Li
,
Y.
,
2018
, “
Kinematics, Dynamics, and Control of a Cable-Driven Hyper-redundant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1693
1704
.
10.
Lim
,
J.
, and
Chung
,
J.
,
2018
, “
Dynamic Analysis of a Tethered Satellite System for Space Debris Capture
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2391
2408
.
11.
Chen
,
Y.
,
Huang
,
R.
,
He
,
L.
,
Ren
,
X.
, and
Zheng
,
B.
,
2014
, “
Dynamical Modelling and Control of Space Tethers: A Review of Space Tether Research
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1077
1099
.
12.
Botta
,
E. M.
,
Sharf
,
I.
,
Misra
,
A. K.
, and
Teichmann
,
M.
,
2016
, “
On the Simulation of Tether-Nets for Space Debris Capture With Vortex Dynamics
,”
Acta Astronaut.
,
123
, pp.
91
102
.
13.
Botta
,
E. M.
,
Sharf
,
I.
, and
Misra
,
A. K.
,
2019
, “
Simulation of Tether-Nets for Capture of Space Debris and Small Asteroids
,”
Acta Astronaut.
,
155
, pp.
448
461
.
14.
Shan
,
M.
,
Guo
,
J.
, and
Gill
,
E.
,
2019
, “
Contact Dynamic Models of Space Debris Capturing Using a Net
,”
Acta Astronaut.
,
158
, pp.
198
205
.
15.
Hou
,
Y.
,
Liu
,
C.
,
Hu
,
H.
,
Yang
,
W.
, and
Shi
,
J.
,
2021
, “
Dynamic Computation of a Tether-Net System Capturing a Space Target Via Discrete Elastic Rods and an Energy-Conserving Integrator
,”
Acta Astronaut.
,
186
, pp.
118
134
.
16.
Sharf
,
I.
,
Thomsen
,
B.
,
Botta
,
E. M.
, and
Misra
,
A. K.
,
2017
, “
Experiments and Simulation of a Net Closing Mechanism for Tether-Net Capture of Space Debris
,”
Acta Astronaut.
,
139
, pp.
332
343
.
17.
Botta
,
E. M.
,
Miles
,
C.
, and
Sharf
,
I.
,
2020
, “
Simulation and Tension Control of a Tether-Actuated Closing Mechanism for Net-Based Capture of Space Debris
,”
Acta Astronaut.
,
174
, pp.
347
358
.
18.
Huang
,
W.
,
He
,
D.
,
Zhang
,
D.
,
Zou
,
H.
,
Liu
,
H.
,
Yang
,
W.
,
Qin
,
L.
, and
Fei
,
Q.
,
2022
, “
Nonlinear Dynamic Modeling of a Tether-Net System for Space Debris Capture
,”
Nonlinear Dyn.
,
110
, pp.
2297
2315
.
19.
Huang
,
W.
,
Zou
,
H.
,
Liu
,
H.
,
Yang
,
W.
,
Gao
,
J.
, and
Liu
,
Z.
,
2023
, “
Contact Dynamic Analysis of Tether-Net System for Space Debris Capture Using Incremental Potential Formulation
,”
Adv. Space Res.
,
72
(
6
), pp.
2039
2050
.
20.
Huang
,
W.
,
Zou
,
H.
,
Pan
,
Y.
,
Zhang
,
K.
,
Zheng
,
J.
,
Li
,
J.
, and
Mao
,
S.
,
2023
, “
Numerical Simulation and Behavior Prediction of a Space Net System Throughout the Capture Process: Spread, Contact, and Close
,”
Int. J. Mech. Syst. Dyn.
,
3
(
3
), pp.
265
273
.
21.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
.
22.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group Se (3)
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
451
474
.
23.
Farokhi
,
H.
,
Xia
,
Y.
, and
Erturk
,
A.
,
2022
, “
Experimentally Validated Geometrically Exact Model for Extreme Nonlinear Motions of Cantilevers
,”
Nonlinear Dyn.
,
107
(
1
), pp.
457
475
.
24.
Shabana
,
A. A.
,
1996
, “An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies,” Technical Report, Department of Mechanical Engineering, University of Illinois at Chicago.
25.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.
26.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.
27.
Kiendl
,
J.
,
Auricchio
,
F.
,
da Veiga
,
L. B.
,
Lovadina
,
C.
, and
Reali
,
A.
,
2015
, “
Isogeometric Collocation Methods for the Reissner–Mindlin Plate Problem
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
489
507
.
28.
Steinbrecher
,
I.
,
Humer
,
A.
, and
Vu-Quoc
,
L.
,
2017
, “
On the Numerical Modeling of Sliding Beams: A Comparison of Different Approaches
,”
J. Sound Vib.
,
408
, pp.
270
290
.
29.
Han
,
S.
,
2022
, “
Configurational Forces and Geometrically Exact Formulation of Sliding Beams in Non-Material Domains
,”
Comput. Methods Appl. Mech. Eng.
,
395
, p.
115063
.
30.
Irschik
,
H.
, and
Holl
,
H.
,
2002
, “
The Equations of Lagrange Written for a Non-material Volume
,”
Acta Mech.
,
153
(
3
), pp.
231
248
.
31.
Pesce
,
C.
,
2003
, “
The Application of Lagrange Equations to Mechanical Systems With Mass Explicitly Dependent on Position
,”
ASME J. Appl. Mech.
,
70
(
5
), pp.
751
756
.
32.
Humer
,
A.
,
Steinbrecher
,
I.
, and
Vu-Quoc
,
L.
,
2020
, “
General Sliding-Beam Formulation: A Non-material Description for Analysis of Sliding Structures and Axially Moving Beams
,”
J. Sound Vib.
,
480
, p.
115341
.
33.
Boyer
,
F.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Renda
,
F.
,
2022
, “
Extended Hamilton’s Principle Applied to Geometrically Exact Kirchhoff Sliding Rods
,”
J. Sound Vib.
,
516
, p.
116511
.
34.
Fotland
,
G.
, and
Haugen
,
B.
,
2022
, “
Numerical Integration Algorithms and Constraint Formulations for an Ale-ancf Cable Element
,”
Mech. Mach. Theory
,
170
, p.
104659
.
35.
Muñoz
,
J. J.
, and
Jelenić
,
G.
,
2004
, “
Sliding Contact Conditions Using the Master–Slave Approach With Application on Geometrically Non-linear Beams
,”
Int. J. Solids Struct.
,
41
(
24–25
), pp.
6963
6992
.
36.
Lee
,
S.-H.
,
Park
,
T.-W.
,
Seo
,
J.-H.
,
Yoon
,
J.-W.
, and
Jun
,
K.-J.
,
2008
, “
The Development of a Sliding Joint for Very Flexible Multibody Dynamics Using Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
3
), pp.
223
237
.
37.
Hong
,
D.
, and
Ren
,
G.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
91
106
.
38.
Guo
,
J.
,
Zhang
,
Y.
,
Wei
,
C.
, and
Zhao
,
Y.
,
2022
, “
Energy-Momentum Integration and Analysis for Sliding Contact Coupling Dynamics in Large Flexible Multibody System
,”
Nonlinear Dyn.
,
110
, pp.
2333
2359
.
39.
Huang
,
W.
,
Huang
,
X.
,
Majidi
,
C.
, and
Jawed
,
M. K.
,
2020
, “
Dynamic Simulation of Articulated Soft Robots
,”
Nat. Commun.
,
11
(
1
), pp.
1
9
.
40.
Jawed
,
M. K.
,
Khouri
,
N.
,
Da
,
F.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2015
, “
Propulsion and Instability of a Flexible Helical Rod Rotating in a Viscous Fluid
,”
Phys. Rev. Lett.
,
115
(
16
), p.
168101
.
41.
Grinspun
,
E.
,
Desbrun
,
M.
,
Polthier
,
K.
,
Schröder
,
P.
, and
Stern
,
A.
,
2006
, “
Discrete Differential Geometry: An Applied Introduction
,”
ACM SIGGRAPH Course
,
7
, pp.
1
139
.
42.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
, p.
63
.
43.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph.
,
29
, p.
116
.
44.
Shen
,
Z.
,
Huang
,
J.
,
Chen
,
W.
, and
Bao
,
H.
,
2015
, “
Geometrically Exact Simulation of Inextensible Ribbon
,”
Comput. Graph. Forum
,
34
(
7
), pp.
145
154
.
45.
Huang
,
W.
,
Ma
,
C.
, and
Qin
,
L.
,
2021
, “
Snap-Through Behaviors of a Pre-deformed Ribbon Under Midpoint Loadings
,”
Int. J. Solids Struct.
,
232
, p.
111184
.
46.
Baraff
,
D.
, and
Witkin
,
A.
,
1998
, “
Large Steps in Cloth Simulation
,” Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques,
ACM
, pp.
43
54
.
47.
Huang
,
W.
,
Wang
,
Y.
,
Li
,
X.
, and
Jawed
,
M. K.
,
2020
, “
Shear Induced Supercritical Pitchfork Bifurcation of Pre-buckled Bands, From Narrow Strips to Wide Plates
,”
J. Mech. Phys. Solids
,
145
, p.
104168
.
48.
Panetta
,
J.
,
Konaković-Luković
,
M.
,
Isvoranu
,
F.
,
Bouleau
,
E.
, and
Pauly
,
M.
,
2019
, “
X-shells: A New Class of Deployable Beam Structures
,”
ACM Trans. Graph.
,
38
(
4
), p.
83
.
49.
Huang
,
W.
,
Qin
,
L.
, and
Khalid Jawed
,
M.
,
2021
, “
Numerical Method for Direct Solution to Form-Finding Problem in Convex Gridshell
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021012
.
50.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
41
), pp.
14663
14668
.
51.
Romero
,
V.
,
Ly
,
M.
,
Rasheed
,
A.-H.
,
Charrondière
,
R.
,
Lazarus
,
A.
,
Neukirch
,
S.
, and
Bertails-Descoubes
,
F.
,
2021
, “
Physical Validation of Simulators in Computer Graphics: A New Framework Dedicated to Slender Elastic Structures and Frictional Contact
,”
ACM Trans. Graph.
,
40
, p.
66
.
52.
Baek
,
C.
,
Sageman-Furnas
,
A. O.
,
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2018
, “
Form Finding in Elastic Gridshells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
1
), pp.
75
80
.
53.
Li
,
M.
,
Ferguson
,
Z.
,
Schneider
,
T.
,
Langlois
,
T. R.
,
Zorin
,
D.
,
Panozzo
,
D.
,
Jiang
,
C.
, and
Kaufman
,
D. M.
,
2020
, “
Incremental Potential Contact: Intersection- and Inversion-Free, Large-Deformation Dynamics.
,”
ACM Trans. Graph.
,
39
(
4
), p.
49
.
54.
Li
,
M.
,
Kaufman
,
D. M.
, and
Jiang
,
C.
,
2020
, “Codimensional Incremental Potential Contact,” preprint arXiv:2012.04457.
55.
Choi
,
A.
,
Tong
,
D.
,
Jawed
,
M. K.
, and
Joo
,
J.
,
2021
, “
Implicit Contact Model for Discrete Elastic Rods in Knot Tying
,”
J. Appl. Mech.
,
88
(
5
), p.
051010
.
56.
Tong
,
D.
,
Choi
,
A.
,
Joo
,
J.
, and
Jawed
,
M. K.
,
2022
, “A Fully Implicit Method for Robust Frictional Contact Handling in Elastic Rods,” preprint arXiv:2205.10309.
57.
Huang
,
W.
,
Liu
,
M.
, and
Hsia
,
K. J.
,
2023
, “
Modeling of Magnetic Cilia Carpet Robots Using Discrete Differential Geometry Formulation
,”
Extreme Mech. Lett.
,
59
, p.
101967
.
58.
Moreau
,
J. J.
,
2011
, “On Unilateral Constraints, Friction and Plasticity,”
New Variational Techniques in Mathematical Physics
,
Springer
, pp.
171
322
.
59.
Liang
,
H.
, and
Mahadevan
,
L.
,
2009
, “
The Shape of a Long Leaf
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
52
), pp.
22049
22054
.
60.
Savin
,
T.
,
Kurpios
,
N. A.
,
Shyer
,
A. E.
,
Florescu
,
P.
,
Liang
,
H.
,
Mahadevan
,
L.
, and
Tabin
,
C. J.
,
2011
, “
On the Growth and Form of the Gut
,”
Nature
,
476
(
7358
), p.
57
.
61.
Huang
,
W.
, and
Jawed
,
M. K.
,
2019
, “
Newmark-Beta Method in Discrete Elastic Rods Algorithm to Avoid Energy Dissipation
,”
J. Appl. Mech.
,
86
(
8
), p.
084501
.
62.
Huang
,
W.
,
He
,
D.
,
Tong
,
D.
,
Chen
,
Y.
,
Huang
,
X.
,
Qin
,
L.
, and
Fei
,
Q.
,
2022
, “
Static Analysis of Elastic Cable Structures Under Mechanical Load Using Discrete Catenary Theory
,”
Fundamental Res.
,
3
(
6
), pp.
967
973
.
63.
Choi
,
K.-J.
, and
Ko
,
H.-S.
,
2005
, “
Research Problems in Clothing Simulation
,”
Comput. Aided Des.
,
37
(
6
), pp.
585
592
.
64.
Bridson
,
R.
,
Marino
,
S.
, and
Fedkiw
,
R.
,
2005
, “
Simulation of Clothing With Folds and Wrinkles
,” ACM SIGGRAPH 2005 Courses,
ACM
, p.
3
.
You do not currently have access to this content.