Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Numerical approaches are elaborated to calculate the rheological response of laminated glass beams, whose viscoelastic interlayer is modeled via fractional calculus. This mathematical description is very effective when the relaxation function of the polymer can be expressed by continuously connected branches of power laws, as is the case for most materials used to laminate glass. The classical approach uses the Grünwald–Letnikov approximation of fractional derivatives, but it requires constant time-steps, which would become very large to reasonably cover the entire observation time, thus losing accuracy. The use of the L1 algorithm with increasing time-steps is proposed, which is well suited to the power law character of the relaxation function. This allows to follow the long-term creep response, providing a better approximation when needed. The method is implemented for beams laminated with viscoelastic interlayers whose relaxation is described by four branches of power laws, to cover most practical cases. Numerical experiments show their advantages over the Grünwald–Letnikov approach for characterizing the long-term structural response.

References

1.
Hooper
,
J.
,
1973
, “
On the Bending of Architectural Laminated Glass
,”
Int. J. Mech. Sci.
,
15
(
4
), pp.
309
323
.
2.
Martin
,
M.
,
Centelles
,
X.
,
Sole
,
A.
,
Barreneche
,
C.
,
Fernández
,
A. I.
, and
Cabeza
,
L. F.
,
2020
, “
Polymeric Interlayer Materials for Laminated Glass: A Review
,”
Constr. Build. Mater.
,
230
, p.
116897
.
3.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2013
, “
The Design of Laminated Glass Under Time-Dependent Loading
,”
Int. J. Mech. Sci.
,
68
, pp.
67
75
.
4.
Feldmann
,
M.
,
Laurs
,
M.
,
Belis
,
J.
,
Buljan
,
N.
,
Criaud
,
A.
,
Dupont
,
E.
, and
Eliasova
,
M.
,
2023
, “
The New CEN/TS 19100: Design of Glass Structures
,”
Glass Struct. Eng.
,
8
(
3
), pp.
317
337
.
5.
Haydar
,
A.
, and
Royer-Carfagni
,
G.
,
2022
, “
A Simple Model for Inflexed Multilayered Laminated Glass Beams Based on Refined Zig-Zag Theory
,”
ASME J. Appl. Mech.
,
90
(
1
), p.
011002
.
6.
Shitanoki
,
Y.
,
Bennison
,
S. J.
, and
Koike
,
Y.
,
2014
, “
Analytic Models of a Thin Glass–Polymer Laminate and Development of a Rational Engineering Design Methodology
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121009
.
7.
Galuppi
,
L.
, and
Royer-Carfagni
,
G. F.
,
2012
, “
Effective Thickness of Laminated Glass Beams: New Expression Via a Variational Approach
,”
Eng. Struct.
,
38
, pp.
53
67
.
8.
Grebowski
,
K.
, and
Zielińska
,
M.
,
2023
, “
Modelling of Laminated Glass PVB Walls of Buildings Exposed to Vehicle Impact With Different Speeds
,”
Eng. Struct.
,
292
, p.
116494
.
9.
Viviani
,
L.
,
Di Paola
,
M.
, and
Royer-Carfagni
,
G.
,
2022
, “
A Fractional Viscoelastic Model for Laminated Glass Sandwich Plates Under Blast Actions
,”
Int. J. Mech. Sci.
,
222
, p.
107204
.
10.
Quaglini
,
V.
,
Cattaneo
,
S.
,
Pettorruso
,
C.
, and
Biolzi
,
L.
,
2020
, “
Cold Bending of Vertical Glass Plates: Wind Loads and Geometrical Instabilities
,”
Eng. Struct.
,
220
, p.
110983
.
11.
Galuppi
,
L.
, and
Royer Carfagni
,
G.
,
2014
, “
Rheology of Cold-Lamination-Bending for Curved Glazing
,”
Eng. Struct.
,
61
, pp.
140
152
.
12.
Centelles
,
X.
,
Pelayo
,
F.
,
Lamela-Rey
,
M. J.
,
Fernández
,
A. I.
,
Salgado-Pizarro
,
R.
,
Castro
,
J. R.
, and
Cabeza
,
L. F.
,
2021
, “
Viscoelastic Characterization of Seven Laminated Glass Interlayer Materials From Static Tests
,”
Constr. Build. Mater.
,
279
, p.
122503
.
13.
Biolzi
,
L.
,
Cattaneo
,
S.
,
Orlando
,
M.
,
Piscitelli
,
L. R.
, and
Spinelli
,
P.
,
2020
, “
Constitutive Relationships of Different Interlayer Materials for Laminated Glass
,”
Composite Struct.
,
244
, p.
112221
.
14.
Gant
,
F.
, and
Bower
,
M.
,
1997
, “
Domain of Influence Method: A New Method for Approximating Prony Series Coefficients and Exponents for Viscoelastic Materials
,”
J. Polym. Eng.
,
17
(
1
), pp.
1
22
.
15.
Viviani
,
L.
,
Di Paola
,
M.
, and
Royer-Carfagni
,
G.
,
2022
, “
Fractional Viscoelastic Modeling of Laminated Glass Beams in the Pre-Crack State Under Explosive Loads
,”
Int. J. Solids Struct.
,
248
, p.
111617
.
16.
Nutting
,
P.
,
1921
, “
A New General Law of Deformation
,”
J. Franklin Inst.
,
191
(
5
), pp.
679
685
.
17.
Torvik
,
P. J.
, and
Bagley
,
R. L.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.
18.
Di Paola
,
M.
,
Galuppi
,
L.
, and
Carfagni
,
G. R.
,
2021
, “
Fractional Viscoelastic Characterization of Laminated Glass Beams Under Time-Varying Loading
,”
Int. J. Mech. Sci.
,
196
, p.
106274
.
19.
Santi
,
L.
,
Bennison
,
S.
,
Haerth
,
M.
, and
Royer-Carfagni
,
G.
,
2023
, “
Fractional Viscoelastic Modelling of Polymeric Interlayers in Laminated Glass. Comparisons With Prony Series Approach
,”
Proceedings of the Glass Perfomance Days
,
Tampere, Finland
,
June 14–16
, pp.
32
36
.
20.
Koeller
,
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
299
307
.
21.
Schiessel
,
H.
,
Metzler
,
R.
,
Blumen
,
A.
, and
Nonnenmacher
,
T. F.
,
1995
, “
Generalized Viscoelastic Models: Their Fractional Equations With Solutions
,”
J. Phys. A: Math. Gen.
,
28
(
23
), p.
6567
.
22.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
A.
,
2011
, “
Visco-Elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
.
23.
Di Lorenzo
,
S.
,
Di Paola
,
M.
,
La Mantia
,
F. P.
, and
Pirrotta
,
A.
,
2017
, “
Non-Linear Viscoelastic Behavior of Polymer Melts Interpreted by Fractional Viscoelastic Model
,”
Meccanica
,
52
(
8
), pp.
1843
1850
.
24.
Scherer
,
R.
,
Kalla
,
S. L.
,
Tang
,
Y.
, and
Huang
,
J.
,
2011
, “
The Grünwald–Letnikov Method for Fractional Differential Equations
,”
Comput. Math. Appl.
,
62
(
3
), pp.
902
917
.
25.
Viviani
,
L.
,
Di Paola
,
M.
, and
Royer Carfagni
,
G.
,
2023
, “
Piecewise Power Law Approximation of the Interlayer Relaxation Curve for the Long-Term Viscoelastic Fractional Modeling of Laminated Glass
,”
Composite Struct.
,
324
, p.
117505
.
26.
Fazio
,
R.
,
Jannelli
,
A.
, and
Agreste
,
S.
,
2018
, “
A Finite Difference Method on Non-Uniform Meshes for Time-Fractional Advection-Diffusion Equations With a Source Term
,”
Appl. Sci.
,
8
(
6
), p.
960
.
27.
Yuste
,
S. B.
, and
Quintana-Murillo
,
J.
,
2012
, “
A Finite Difference Method With Non-Uniform Timesteps for Fractional Diffusion Equations
,”
Comput. Phys. Commun.
,
183
(
12
), pp.
2594
2600
.
28.
Yuste
,
S. B.
, and
Quintana-Murillo
,
J.
,
2016
, “
Fast, Accurate and Robust Adaptive Finite Difference Methods for Fractional Diffusion Equations
,”
Numer. Algor.
,
71
(
1
), pp.
207
228
.
29.
Kraus
,
M. A.
, and
Niederwald
,
M.
,
2017
, “
Generalized Collocation Method Using Stiffness Matrices in the Context of the Theory of Linear Viscoelasticity (GUSTL)
,”
Technische Mechanik
,
37
(
1
), pp.
82
106
.
30.
Tarasov
,
V. E.
,
2016
, “
Leibniz Rule and Fractional Derivatives of Power Functions
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031014
.
31.
Di Paola
,
M.
,
Heuer
,
R.
, and
Pirrotta
,
A.
,
2013
, “
Fractional Visco-Elastic Euler-Bernoulli Beam
,”
Int. J. Solids Struct.
,
50
(
22–23
), pp.
3505
3510
.
32.
Pirrotta
,
A.
,
Cutrona
,
S.
, and
Di Lorenzo
,
S.
,
2015
, “
Fractional Visco-Elastic Timoshenko Beam From Elastic Euler–Bernoulli Beam
,”
Acta Mechanica
,
226
(
1
), pp.
179
189
.
33.
Pirrotta
,
A.
,
Cutrona
,
S.
,
Di Lorenzo
,
S.
, and
Di Matteo
,
A.
,
2015
, “
Fractional Visco-Elastic Timoshenko Beam Deflection Via Single Equation
,”
Int. J. Numer. Meth. Eng.
,
104
(
9
), pp.
869
886
.
34.
Centelles
,
X.
,
Pelayo
,
F.
,
Aenlle López
,
M.
,
Castro
,
J. R.
, and
Cabeza
,
L. F.
,
2021
, “
Long-Term Loading and Recovery of a Laminated Glass Slab With Three Different Interlayers
,”
Constr. Build. Mater.
,
287
, p.
122991
.
35.
Tarasov
,
V. E.
,
2013
, “
No Violation of the Leibniz Rule. No Fractional Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
11
), pp.
2945
2948
.
You do not currently have access to this content.