Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Auxetic architected materials present a novel class of damage-tolerant materials with tunable mechanical characteristics and high energy absorption due to their unique ability to laterally contract and densify when subjected to axial compressive loading. The current state of research on negative Poisson’s ratio materials mainly focuses on 2D geometries and a few families of 3D geometries with limited experimental comparisons between different architectures and various geometrical features. Furthermore, when manufactured via laser powder bed fusion, the influence of as-built deviations of geometrical and material properties inherently present due to the melt pool solidification process for thin features is relatively unexplored in the case of metal-architected materials. The authors aim to study the elastic properties, peak characteristics, and failure modes of steel auxetic truss lattices subjected to axial compression while also addressing the uncertainties inherent to the metal laser powder bed fusion additive manufacturing of architected materials. This work presents an experimental and computational exploration and comparison of two promising three-dimensional auxetic truss lattice families of low relative densities. A comprehensive investigation of metal negative Poisson’s ratio mechanical metamaterials is presented, including the selection of the architectures, modeling, laser powder bed fusion additive manufacturing, as-built part characterization, material testing, and mechanical testing under axial compression. The study of such architectures can unlock their potential in making them readily adaptable to a wide variety of engineering applications.

References

1.
Rastegarzadeh
,
S.
,
Huang
,
J.
, and
Wang
,
J.
,
2023
, “
Architected Cellular Materials for Aerospace Components Design and Manufacturing
,” p.
V001T01A007
.
2.
Liu
,
Q.
,
2006
, “
Literature Review: Materials With Negative Poisson’s Ratios and Potential Applications to Aerospace and Defence
,” p.
47
.
3.
Bohara
,
R. P.
,
Linforth
,
S.
,
Nguyen
,
T.
,
Ghazlan
,
A.
, and
Ngo
,
T.
,
2023
, “
Anti-Blast and -Impact Performances of Auxetic Structures: A Review of Structures, Materials, Methods, and Fabrications
,”
Eng. Struct.
,
276
.
4.
Cui
,
H.
,
Yao
,
D.
,
Hensleigh
,
R.
,
Lu
,
H.
,
Calderon
,
A.
,
Xu
,
Z.
,
Davaria
,
S.
,
Wang
,
Z.
,
Mercier
,
P.
,
Tarazaga
,
P.
, and
Zheng
,
X. R.
,
2022
, “
Design and Printing of Proprioceptive Three-Dimensional Architected Robotic Metamaterials
,”
Science
,
376
(
6599
), pp.
1287
1293
.
5.
Hedayati
,
R.
,
Güven
,
A.
, and
van der Zwaag
,
S.
,
2021
, “
3D Gradient Auxetic Soft Mechanical Metamaterials Fabricated by Additive Manufacturing
,”
Appl. Phys. Lett.
,
118
(
141904
).
6.
Tzortzinis
,
G.
,
Gross
,
A.
, and
Gerasimidis
,
S.
,
2022
, “
Auxetic Boosting of Confinement in Mortar by 3D Reentrant Truss Lattices for Next Generation Steel Reinforced Concrete Members
,”
Extr. Mech. Lett.
,
52
.
7.
Salazar
,
B.
,
Aghdasi
,
P.
,
Williams
,
I. D.
,
Ostertag
,
C. P.
, and
Taylor
,
H. K.
,
2020
, “
Polymer Lattice-Reinforcement for Enhancing Ductility of Concrete
,”
Mater. Des.
,
196
.
8.
Xu
,
Y.
,
Zhang
,
H.
,
Gan
,
Y.
, and
Šavija
,
B.
,
2021
, “
Cementitious Composites Reinforced With 3D Printed Functionally Graded Polymeric Lattice Structures: Experiments and Modelling
,”
Addit. Manuf.
,
39
.
9.
Zhou
,
G.
,
Ma
,
Z.-D.
,
Li
,
G.
,
Cheng
,
A.
,
Duan
,
L.
, and
Zhao
,
W.
,
2016
, “
Design Optimization of a Novel NPR Crash Box Based on Multi-objective Genetic Algorithm
,”
Struct. Multidiscipl. Optim.
,
54
(
3
), pp.
673
684
.
10.
Babaee
,
S.
,
Shim
,
J.
,
Weaver
,
J. C.
,
Chen
,
E. R.
,
Patel
,
N.
, and
Bertoldi
,
K.
,
2013
, “
3D Soft Metamaterials With Negative Poisson’s Ratio
,”
Adv. Mater.
,
25
(
36
), pp.
5044
5049
.
11.
Kolken
,
H.
,
Callens
,
S.
,
Leeflang
,
M.
,
Mirzaali
,
M.
, and
Zadpoor
,
A.
,
2022
, “
Merging Strut-Based and Minimal Surface Meta-Biomaterials: Decoupling Surface Area From Mechanical Properties
,”
Addit. Manuf.
,
52
.
12.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
13.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
14.
Evans
,
K. E.
,
1991
, “
Auxetic Polymers: A New Range of Materials
,”
Endeavour
,
15
(
4
), pp.
170
174
.
15.
Evans
,
K.
,
Nkansah
,
M.
, and
Hutchinson
,
I.
,
1994
, “
Auxetic Foams: Modelling Negative Poisson’s Ratios
,”
Acta Metall. Mater.
,
42
(
4
), pp.
1289
1294
.
16.
Caddock
,
B. D.
, and
Evans
,
K. E.
,
1989
, “
Microporous Materials With Negative Poisson’s Ratios. I. Microstructure and Mechanical Properties
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1877
1882
.
17.
Evans
,
K. E.
, and
Caddock
,
B. D.
,
1989
, “
Microporous Materials With Negative Poisson’s Ratios. II. Mechanisms and Interpretation
,”
J. Phys. D: Appl. Phys.
,
22
(
12
), pp.
1883
1887
.
18.
Pham
,
M.-S.
,
Liu
,
C.
,
Todd
,
I.
, and
Lertthanasarn
,
J.
,
2019
, “
Damage-Tolerant Architected Materials Inspired by Crystal Microstructure
,”
Nature
,
565
(
7739
), pp.
305
311
.
19.
Zhang
,
Y.
,
Hsieh
,
M.-T.
, and
Valdevit
,
L.
,
2021
, “
Mechanical Performance of 3D Printed Interpenetrating Phase Composites With Spinodal Topologies
,”
Compos. Struct.
,
263
.
20.
Sajadi
,
S. M.
,
Tiwary
,
C. S.
,
Rahmati
,
A. H.
,
Eichmann
,
S. L.
,
Thaemlitz
,
C. J.
,
Salpekar
,
D.
,
Puthirath
,
A. B.
,
Boul
,
P. J.
,
Rahman
,
M. M.
,
Meiyazhagan
,
A.
, and
Ajayan
,
P. M.
,
2021
, “
Deformation Resilient Cement Structures Using 3D-Printed Molds
,”
iScience
,
24
.
21.
Tao
,
Z.
,
Ren
,
X.
,
Sun
,
L.
,
Zhang
,
Y.
,
Jiang
,
W.
,
Zhao
,
A. G.
, and
Xie
,
Y. M.
,
2022
, “
A Novel Re-Entrant Honeycomb Metamaterial With Tunable Bandgap
,”
Smart Mater. Struct.
,
31
(
095024
).
22.
Pasini
,
C.
,
Inverardi
,
N.
,
Battini
,
D.
,
Scalet
,
G.
,
Marconi
,
S.
,
Auricchio
,
F.
, and
Pandini
,
S.
,
2022
, “
Experimental Investigation and Modeling of the Temperature Memory Effect in a 4D-Printed Auxetic Structure
,”
Smart Mater. Struct.
,
31
(
095021
).
23.
Zhan
,
C.
,
Li
,
M.
,
McCoy
,
R.
,
Zhao
,
L.
, and
Lu
,
W.
,
2022
, “
3D Printed Hierarchical Re-Entrant Honeycombs: Enhanced Mechanical Properties and the Underlying Deformation Mechanisms
,”
Compos. Struct.
,
290
.
24.
Rayneau-Kirkhope
,
D.
,
2018
, “
Stiff Auxetics: Hierarchy as a Route to Stiff, Strong Lattice Based Auxetic Meta-Materials
,”
Sci. Rep.
,
8
(
12437
).
25.
Mousanezhad
,
D.
,
Babaee
,
S.
,
Ebrahimi
,
H.
,
Ghosh
,
R.
,
Hamouda
,
A. S.
,
Bertoldi
,
K.
, and
Vaziri
,
A.
,
2016
, “
Hierarchical Honeycomb Auxetic Metamaterials
,”
Sci. Rep.
,
5
.
26.
Meza
,
L. R.
,
Zelhofer
,
A. J.
,
Clarke
,
N.
,
Mateos
,
A. J.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2015
, “
Resilient 3D Hierarchical Architected Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
37
), pp.
11502
11507
.
27.
Lakes
,
R. S.
,
2017
, “
Negative-Poisson’s-Ratio Materials: Auxetic Solids
,”
Ann. Rev. Mater. Res.
,
47
(
1
), pp.
63
81
.
28.
Kolken
,
H. A.
, and
Zadpoor
,
A. A.
,
2017
, “
Auxetic Mechanical Metamaterials
,”
RSC Adv.
,
7
(
9
), pp.
5111
5129
.
29.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson’s Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.
30.
Zhou
,
Y.
,
Li
,
Y.
,
Jiang
,
D.
,
Chen
,
Y.
,
Min Xie
,
Y.
, and
Jia
,
L.-J.
,
2022
, “
In-Plane Impact Behavior of 3D-Printed Auxetic Stainless Honeycombs
,”
Eng. Struct.
,
266
.
31.
Li
,
T.
,
Hu
,
X.
,
Chen
,
Y.
, and
Wang
,
L.
,
2017
, “
Harnessing Out-of-Plane Deformation to Design 3D Architected Lattice Metamaterials With Tunable Poisson’s Ratio
,”
Sci. Rep.
,
7
(
1
), p.
8949
.
32.
Box
,
F.
,
Johnson
,
C. G.
, and
Pihler-Puzović
,
D.
,
2020
, “
Hard Auxetic Metamaterials
,”
Extr. Mech. Lett.
,
40
.
33.
Yousuf
,
M. H.
,
Abuzaid
,
W.
, and
Alkhader
,
M.
,
2020
, “
4D Printed Auxetic Structures With Tunable Mechanical Properties
,”
Addit. Manuf.
,
35
.
34.
Jiang
,
Y.
, and
Li
,
Y.
,
2018
, “
3D Printed Auxetic Mechanical Metamaterial With Chiral Cells and Re-Entrant Cores
,”
Sci. Rep.
,
8
(
2397
).
35.
Wang
,
X.-T.
,
Wang
,
B.
,
Li
,
X.-W.
, and
Ma
,
L.
,
2017
, “
Mechanical Properties of 3D Re-Entrant Auxetic Cellular Structures
,”
Int. J. Mech. Sci.
,
131–132
, pp.
396
407
.
36.
Bronder
,
S.
,
Herter
,
F.
,
Röhrig
,
A.
,
Bähre
,
D.
, and
Jung
,
A.
,
2022
, “
Design Study for Multifunctional 3D Re-Entrant Auxetics
,”
Adv. Eng. Mater.
,
24
.
37.
Ren
,
X.
,
Shen
,
J.
,
Ghaedizadeh
,
A.
,
Tian
,
H.
, and
Min Xie
,
Y.
,
2015
, “
Experiments and Parametric Studies on 3D Metallic Auxetic Metamaterials With Tuneable Mechanical Properties
,”
Smart Mater. Struct.
,
24
.
38.
Lohmuller
,
P.
,
Favre
,
J.
,
Kenzari
,
S.
,
Piotrowski
,
B.
,
Peltier
,
L.
, and
Laheurte
,
P.
,
2019
, “
Architectural Effect on 3D Elastic Properties and Anisotropy of Cubic Lattice Structures
,”
Mater. Des.
,
182
.
39.
Kadic
,
M.
,
Milton
,
G. W.
,
van Hecke
,
M.
, and
Wegener
,
M.
,
2019
, “
3D Metamaterials
,”
Nat. Rev. Phys.
,
1
(
3
), pp.
198
210
.
40.
Meza
,
L. R.
,
Phlipot
,
G. P.
,
Portela
,
C. M.
,
Maggi
,
A.
,
Montemayor
,
L. C.
,
Comella
,
A.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2017
, “
Reexamining the Mechanical Property Space of Three-Dimensional Lattice Architectures
,”
Acta Mater.
,
140
, pp.
424
432
.
41.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
, et al.,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
42.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
43.
Vyatskikh
,
A.
,
Delalande
,
S.
,
Kudo
,
A.
,
Zhang
,
X.
,
Portela
,
C. M.
, and
Greer
,
J. R.
,
2018
, “
Additive Manufacturing of 3D Nano-Architected Metals
,”
Nat. Commun.
,
9
(
1
), p.
593
.
44.
Roach
,
A. M.
,
White
,
B. C.
,
Garland
,
A.
,
Jared
,
B. H.
,
Carroll
,
J. D.
, and
Boyce
,
B. L.
,
2020
, “
Size-Dependent Stochastic Tensile Properties in Additively Manufactured 316L Stainless Steel
,”
Addit. Manuf.
,
32
.
45.
Jensen
,
S. C.
,
Koepke
,
J. R.
,
Saiz
,
D. J.
,
Heiden
,
M. J.
,
Carroll
,
J. D.
,
Boyce
,
B. L.
, and
Jared
,
B. H.
,
2022
, “
Optimization of Stochastic Feature Properties in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
56
.
46.
Liu
,
L.
,
Kamm
,
P.
,
García-Moreno
,
F.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-Dimensional Metallic Lattices: The Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids.
,
107
, pp.
160
184
.
47.
Gradl
,
P.
,
Cervone
,
A.
, and
Colonna
,
P.
,
2023
, “
Influence of Build Angles on Thin-Wall Geometry and Surface Texture in Laser Powder Directed Energy Deposition
,”
Mater. Des.
,
234
.
48.
Tancogne-Dejean
,
T.
,
Spierings
,
A. B.
, and
Mohr
,
D.
,
2016
, “
Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading
,”
Acta Mater.
,
116
, pp.
14
28
.
49.
Bagheri
,
Z. S.
,
Melancon
,
D.
,
Liu
,
L.
,
Johnston
,
R. B.
, and
Pasini
,
D.
,
2017
, “
Compensation Strategy to Reduce Geometry and Mechanics Mismatches in Porous Biomaterials Built With Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
70
, pp.
17
27
.
50.
Simoes
,
M.
,
Harris
,
J.
,
Ghouse
,
S.
,
Hooper
,
P.
, and
McShane
,
G.
,
2022
, “
Process Parameter Sensitivity of the Energy Absorbing Properties of Additively Manufactured Metallic Cellular Materials
,”
Mater. Des.
,
224
.
51.
Li
,
S.
,
Hassanin
,
H.
,
Attallah
,
M. M.
,
Adkins
,
N. J.
, and
Essa
,
K.
,
2016
, “
The Development of TiNi-Based Negative Poisson’s Ratio Structure Using Selective Laser Melting
,”
Acta Mater.
,
105
, pp.
75
83
.
52.
Xiong
,
J.
,
Gu
,
D.
,
Chen
,
H.
,
Dai
,
D.
, and
Shi
,
Q.
,
2017
, “
Structural Optimization of Re-Entrant Negative Poisson’s Ratio Structure Fabricated by Selective Laser Melting
,”
Mater. Des.
,
120
, pp.
307
316
.
53.
Chen
,
D.
,
Li
,
D.
,
Pan
,
K.
,
Gao
,
S.
,
Wang
,
B.
,
Sun
,
M.
,
Zhao
,
C.
,
Liu
,
X.
, and
Li
,
N.
,
2022
, “
Strength Enhancement and Modulus Modulation in Auxetic Meta-Biomaterials Produced by Selective Laser Melting
,”
Acta Biomater.
,
153
, pp.
596
613
.
54.
Carneiro
,
V.
,
Puga
,
H.
, and
Meireles
,
J.
,
2019
, “
Positive, Zero and Negative Poisson’s Ratio Non-Stochastic Metallic Cellular Solids: Dependence Between Static and Dynamic Mechanical Properties
,”
Compos. Struct.
,
226
.
55.
Yang
,
L.
,
Cormier
,
D.
,
West
,
H.
,
Harrysson
,
O.
, and
Knowlson
,
K.
,
2012
, “
Non-Stochastic Ti–6Al–4V Foam Structures With Negative Poisson’s Ratio
,”
Mater. Sci. Eng. A
,
558
, pp.
579
585
.
56.
Yang
,
L.
,
Harrysson
,
O.
,
West
,
H.
, and
Cormier
,
D.
,
2015
, “
Mechanical Properties of 3D Re-Entrant Honeycomb Auxetic Structures Realized Via Additive Manufacturing
,”
Int. J. Solids Struct.
,
69–70
, pp.
475
490
.
57.
Mercer
,
C.
,
Speck
,
T.
,
Lee
,
J.
,
Balint
,
D. S.
, and
Thielen
,
M.
,
2022
, “
Effects of Geometry and Boundary Constraint on the Stiffness and Negative Poisson’s Ratio Behaviour of Auxetic Metamaterials Under Quasi-Static and Impact Loading
,”
Int. J. Impact Eng.
,
169
.
58.
Geng
,
L.
,
Wu
,
W.
,
Sun
,
L.
, and
Fang
,
D.
,
2019
, “
Damage Characterizations and Simulation of Selective Laser Melting Fabricated 3D Re-Entrant Lattices Based on In-Situ CT Testing and Geometric Reconstruction
,”
Int. J. Mech. Sci.
,
157–158
, pp.
231
242
.
59.
Schwerdtfeger
,
J.
,
Heinl
,
P.
,
Singer
,
R. F.
, and
Körner
,
C.
,
2010
, “
Auxetic Cellular Structures Through Selective Electron-Beam Melting
,”
Phys. Status Solidi (b)
,
247
(
2
), pp.
269
272
.
60.
Teng
,
X. C.
,
Ren
,
X.
,
Zhang
,
Y.
,
Jiang
,
W.
,
Pan
,
Y.
,
Zhang
,
X. G.
,
Zhang
,
X. Y.
, and
Xie
,
Y. M.
,
2022
, “
A Simple 3D Re-Entrant Auxetic Metamaterial With Enhanced Energy Absorption
,”
Int. J. Mech. Sci.
,
229
.
61.
Suard
,
M.
,
Martin
,
G.
,
Lhuissier
,
P.
,
Dendievel
,
R.
,
Vignat
,
F.
,
Blandin
,
J.-J.
, and
Villeneuve
,
F.
,
2015
, “
Mechanical Equivalent Diameter of Single Struts for the Stiffness Prediction of Lattice Structures Produced by Electron Beam Melting
,”
Addit. Manuf.
,
8
, pp.
124
131
.
62.
Photiou
,
D.
,
Avraam
,
S.
,
Sillani
,
F.
,
Verga
,
F.
,
Jay
,
O.
, and
Papadakis
,
L.
,
2021
, “
Experimental and Numerical Analysis of 3D Printed Polymer Tetra-Petal Auxetic Structures Under Compression
,”
Appl. Sci.
,
11
.
63.
Chen
,
Y.
, and
Fu
,
M.-H.
,
2017
, “
A Novel Three-Dimensional Auxetic Lattice Meta-Material With Enhanced Stiffness
,”
Smart Mater. Struct.
,
26
(
105029
).
64.
Shokri Rad
,
M.
,
Prawoto
,
Y.
, and
Ahmad
,
Z.
,
2014
, “
Analytical Solution and Finite Element Approach to the 3D Re-Entrant Structures of Auxetic Materials
,”
Mech. Mater.
,
74
, pp.
76
87
.
65.
Shokri Rad
,
M.
,
Ahmad
,
Z.
, and
Alias
,
A.
,
2015
, “
Computational Approach in Formulating Mechanical Characteristics of 3D Star Honeycomb Auxetic Structure
,”
Adv. Mater. Sci. Eng.
,
2015
, pp.
1
11
.
66.
Lvov
,
V.
,
Senatov
,
F.
,
Korsunsky
,
A.
, and
Salimon
,
A.
,
2020
, “
Design and Mechanical Properties of 3D-Printed Auxetic Honeycomb Structure
,”
Mater. Today Commun.
,
24
.
67.
Lvov
,
V.
,
Senatov
,
F.
,
Stepashkin
,
A.
,
Veveris
,
A.
,
Pavlov
,
M.
, and
Komissarov
,
A.
,
2020
, “
Low-Cycle Fatigue Behavior of 3D-Printed Metallic Auxetic Structure
,”
Mater. Today: Proc.
,
33
, pp.
1979
1983
.
68.
Lim
,
T.-C.
,
2016
, “
A 3D Auxetic Material Based on Intersecting Double Arrowheads: A 3D Auxetic Material Based on Intersecting Double Arrowheads
,”
Phys. Status Solidi (b)
,
253
(
7
), pp.
1252
1260
.
69.
Zheng-Dong
,
M.
,
2010
, Three-Dimensional Auxetic Structures and Applications Thereof, US PATENT US 2010/0119792A1.
70.
Zhang
,
M.
,
2021
, “
Study of Auxetic Composite With Isotropic Poisson’s Ratio by Random Inclusions
,” Ph.D. Dissertation, Hong Kong Polytechnic University.
71.
Álvarez Elipe
,
J. C.
, and
Díaz Lantada
,
A.
,
2012
, “
Comparative Study of Auxetic Geometries by Means of Computer-Aided Design and Engineering
,”
Smart Mater. Struct.
,
21
.
72.
Zhang
,
W.
,
Li
,
Z.
,
Wang
,
J.
,
Scarpa
,
F.
, and
Wang
,
X.
,
2022
, “
Mechanics of Novel Asymmetrical Re-Entrant Metamaterials and Metastructures
,”
Compos. Struct.
,
291
.
73.
Dassault Systémes SIMULIA Abaqus/Standard CAE 2023, November 2022.
74.
Yang
,
Q.-S.
, and
Becker
,
W.
,
2004
, “
Numerical Investigation for Stress, Strain and Energy Homogenization of Orthotropic Composite With Periodic Microstructure and Non-Symmetric Inclusions
,”
Comput. Mater. Sci.
,
31
(
1–2
), pp.
169
180
.
75.
ASTM Standard C109/C109M-23
. Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50mm] cube specimens).
76.
Robert McNeel and Associates (TLM, Inc.), Rhino 3D v7, November, 2020.
77.
Dassault Systémes, Solidworks 3D CAD Design 2023, September 2022.
78.
Materialise NV, Magics 19, October, 2014.
79.
EOS Gmbh, EOSPrint 2, December, 2020.
80.
Gross
,
A.
,
Pantidis
,
P.
,
Bertoldi
,
K.
, and
Gerasimidis
,
S.
,
2019
, “
Correlation Between Topology and Elastic Properties of Imperfect Truss-Lattice Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
577
598
.
81.
Object Research Systems (ORS) Inc., Dragonfly Pro 2022.2, 2022.
82.
Martin
,
A. A.
,
Calta
,
N. P.
,
Khairallah
,
S. A.
,
Wang
,
J.
,
Depond
,
P. J.
,
Fong
,
A. Y.
,
Thampy
,
V.
, et al.,
2019
, “
Dynamics of Pore Formation During Laser Powder Bed Fusion Additive Manufacturing
,”
Nat. Commun.
,
10
(
1
), p.
1987
.
83.
Huang
,
Y.
,
Fleming
,
T. G.
,
Clark
,
S. J.
,
Marussi
,
S.
,
Fezzaa
,
K.
,
Thiyagalingam
,
J.
,
Leung
,
C. L. A.
, and
Lee
,
P. D.
,
2022
, “
Keyhole Fluctuation and Pore Formation Mechanisms During Laser Powder Bed Fusion Additive Manufacturing
,”
Nat. Commun.
,
13
(
1
), p.
1170
.
84.
Kan
,
W. H.
,
Chiu
,
L. N. S.
,
Lim
,
C. V. S.
,
Zhu
,
Y.
,
Tian
,
Y.
,
Jiang
,
D.
, and
Huang
,
A.
,
2022
, “
A Critical Review on the Effects of Process-Induced Porosity on the Mechanical Properties of Alloys Fabricated by Laser Powder Bed Fusion
,”
J. Mater. Sci.
,
57
(
21
), pp.
9818
9865
.
85.
ASTM Standard E83-16. Practice for Verification and Classification of Extensometer Systems.
86.
Pijpers
,
R.
, and
Slot
,
H.
,
2020
, “
Friction Coefficients for Steel to Steel Contact Surfaces in Air and Seawater
,”
J. Phys.: Conf. Series
,
1669
(
1
), p.
012002
.
87.
Mirabal
,
A.
,
Loza-Hernandez
,
I.
,
Clark
,
C.
,
Hooks
,
D. E.
,
McBride
,
M.
, and
Stull
,
J. A.
,
2023
, “
Roughness Measurements Across Topographically Varied Additively Manufactured Metal Surfaces
,”
Addit. Manuf.
,
69
.
88.
Tancogne-Dejean
,
T.
, and
Mohr
,
D.
,
2018
, “
Stiffness and Specific Energy Absorption of Additively-Manufactured Metallic BCC Metamaterials Composed of Tapered Beams
,”
Int. J. Mech. Sci.
,
141
, pp.
101
116
.
You do not currently have access to this content.