Abstract

Thin structures like shells are highly susceptible to mechanical instabilities. They can undergo large nonlinear elastic deformations while exhibiting combined bending and stretching modes of deformation. Here, we propose a new displacement-based finite element (FE) formulation based on the isogeometric discretization of Koiter’s nonlinear shell theory and use of the method of dynamic relaxation (DR) to solve equilibrium configurations of problems involving fine-scale and hierarchical wrinkling and buckling. No imperfection seeding is required to trigger instabilities. The use of the NURBS basis provides a rotation-free, conforming, higher-order spatial continuity such that curvatures and membrane strains can be computed directly from interpolating the position vectors of the control points using spatial finite differences. The pseudo-dissipative FE dynamical system is updated through explicit time integration and made scalable for parallel computing using a message passing interface (MPI). The proposed FE method is successfully benchmarked against several numerical and experimental results.

References

1.
Ghaffari
,
R.
,
Duong
,
T. X.
, and
Sauer
,
R. A.
,
2018
, “
A New Shell Formulation for Graphene Structures Based on Existing Ab-Initio Data
,”
Int. J. Solids. Struct.
,
135
, pp.
37
60
.
2.
Turco
,
E.
,
Dell’Isola
,
F.
,
Rizzi
,
N. L.
,
Grygoruk
,
R.
,
Müller
,
W. H.
, and
Liebold
,
C.
,
2016
, “
Fiber Rupture in Sheared Planar Pantographic Sheets: Numerical and Experimental Evidence
,”
Mech. Res. Commun.
,
76
, pp.
86
90
.
3.
Chung
,
J. Y.
,
Vaziri
,
A.
, and
Mahadevan
,
L.
,
2018
, “
Reprogrammable Braille on an Elastic Shell
,”
Proc. Natl. Acad. Sci. USA
,
115
(
29
), pp.
7509
7514
.
4.
Dias
,
M. A.
,
Dudte
,
L. H.
,
Mahadevan
,
L.
, and
Santangelo
,
C. D.
,
2012
, “
Geometric Mechanics of Curved Crease Origami
,”
Phys. Rev. Lett.
,
109
(
11
), p.
114301
.
5.
Błachut
,
J.
,
2014
, “
Experimental Perspective on the Buckling of Pressure Vessel Components
,”
Appl. Mech. Rev.
,
66
(
1
), p.
010803
.
6.
Caspar
,
D. L.
, and
Klug
,
A.
,
1962
, “
Physical Principles in the Construction of Regular Viruses
,”
Cold Spring Harb. Symp. Quant. Biol.
,
27
, pp.
1
24
.
7.
Bala Subramaniam
,
A.
,
Abkarian
,
M.
,
Mahadevan
,
L.
, and
Stone
,
H. A.
,
2005
, “
Non-Spherical Bubbles
,”
Nature
,
438
(
7070
), pp.
930
930
.
8.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-Dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids.
,
59
(
10
), pp.
2103
2115
.
9.
Koiter
,
W. T.
,
1966
, “
On the Nonlinear Theory of Thin Elastic Shells
,”
Proc. Koninkl. Ned. Akad. van Wetenschappen, Series B
,
69
, pp.
1
54
.
10.
Koiter
,
W.
,
1960
, “A Consistent First Approximation in the General Theory of Thin Elastic Shells,”
The Theory of Thin Elastic Shells
,
W. T.
Koiter
, ed.,
North-Holland Publishing Company
,
Amsterdam, Holland
, pp.
12
33
.
11.
Ciarlet
,
P. G.
, and
Mardare
,
C.
,
2018
, “
A Nonlinear Shell Model of Koiter’s Type
,”
Comptes Rendus. Math.
,
356
(
2
), pp.
227
234
.
12.
Cerda
,
E.
,
Ravi-Chandar
,
K.
, and
Mahadevan
,
L.
,
2002
, “
Wrinkling of an Elastic Sheet Under Tension
,”
Nature
,
419
(
6907
), pp.
579
580
.
13.
Cerda
,
E.
, and
Mahadevan
,
L.
,
2003
, “
Geometry and Physics of Wrinkling
,”
Phys. Rev. Lett.
,
90
(
7
), p.
074302
.
14.
Vaziri
,
A.
, and
Mahadevan
,
L.
,
2008
, “
Localized and Extended Deformations of Elastic Shells
,”
Proc. Natl. Acad. Sci. USA
,
105
(
23
), pp.
7913
7918
.
15.
Budiansky
,
B.
, and
Hutchinson
,
J. W.
,
1966
, “Dynamic Buckling of Imperfection-Sensitive Structures,”
Applied Mechanics
,
H.
Görtler
, ed.,
Springer
, pp.
636
651
.
16.
Austin Cottrell
,
J.
,
Thomas
,
J. R.
, and
Hughes
,
Y. B.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
, 1 ed.,
Wiley
,
Chichester, UK
.
17.
Kiendl
,
J.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2010
, “
The Bending Strip Method for Isogeometric Analysis of Kirchhoff–Love Shell Structures Comprised of Multiple Patches
,”
Comput. Methods. Appl. Mech. Eng.
,
199
(
37–40
), pp.
2403
2416
.
18.
Duong
,
T. X.
,
Roohbakhshan
,
F.
, and
Sauer
,
R. A.
,
2017
, “
A New Rotation-Free Isogeometric Thin Shell Formulation and a Corresponding Continuity Constraint for Patch Boundaries
,”
Comput. Methods. Appl. Mech. Eng.
,
316
, pp.
43
83
.
19.
Beirão Da Veiga
,
L.
,
Hughes
,
T.
,
Kiendl
,
J.
,
Lovadina
,
C.
,
Niiranen
,
J.
,
Reali
,
A.
, and
Speleers
,
H.
,
2015
, “
A Locking-Free Model for Reissner-Mindlin Plates: Analysis and Isogeometric Implementation Via Nurbs and Triangular Nurps
,”
Math. Models Methods Appl. Sci.
,
25
(
8
), pp.
1519
1551
.
20.
Benson
,
D.
,
Bazilevs
,
Y.
,
Hsu
,
M.
, and
Hughes
,
T.
,
2010
, “
Isogeometric Shell Analysis: The Reissner-Mindlin Shell
,”
Comput. Methods. Appl. Mech. Eng.
,
199
(
5
), pp.
276
289
.
21.
Taylor
,
M.
,
Bertoldi
,
K.
, and
Steigmann
,
D. J.
,
2014
, “
Spatial Resolution of Wrinkle Patterns in Thin Elastic Sheets at Finite Strain
,”
J. Mech. Phys. Solids.
,
62
, pp.
163
180
.
22.
Nakashino
,
K.
,
Nordmark
,
A.
, and
Eriksson
,
A.
,
2020
, “
Geometrically Nonlinear Isogeometric Analysis of a Partly Wrinkled Membrane Structure
,”
Comput. Struct.
,
239
, p.
106302
.
23.
Verhelst
,
H.
,
2019
, “
Modelling Wrinkling Behaviour of Large Floating Thin Offshore Structures: An Application of Isogeometric Structural Analysis for Post-Buckling Analyses
,” Master thesis, TU Delft, Delft, Netherlands.
24.
Alic
,
V.
, and
Persson
,
K.
,
2016
, “
Form Finding With Dynamic Relaxation and Isogeometric Membrane Elements
,”
Comput. Methods. Appl. Mech. Eng.
,
300
, pp.
734
747
.
25.
Kiendl
,
J.
,
Bletzinger
,
K.-U.
,
Linhard
,
J.
, and
Wüchner
,
R.
,
2009
, “
Isogeometric Shell Analysis With Kirchhoff–Love Elements
,”
Comput. Methods. Appl. Mech. Eng.
,
198
(
49–52
), pp.
3902
3914
.
26.
Underwood
,
P.
,
1986
, “
Dynamic Relaxation
,”
Comput. Method Trans. Anal.
,
1
, pp.
245
263
.
27.
Joldes
,
G. R.
,
Wittek
,
A.
, and
Miller
,
K.
,
2011
, “
An Adaptive Dynamic Relaxation Method for Solving Nonlinear Finite Element Problems. Application to Brain Shift Estimation
,”
Inter. J. Num. Methods Biomed. Eng.
,
27
(
2
), pp.
173
185
.
28.
Ibanez
,
D.
,
Dunn
,
I.
, and
Shephard
,
M. S.
,
2016
, “
Hybrid Mpi-thread Parallelization of Adaptive Mesh Operations
,”
Parallel Comput.
,
52
, pp.
133
143
.
29.
Wong
,
W.
, and
Pellegrino
,
S.
,
2006
, “
Wrinkled Membranes I: Experiments
,”
J. Mech. Mater. Struct.
,
1
(
1
), pp.
3
25
.
30.
Steigmann
,
D. J.
,
2013
, “
Koiter’s Shell Theory From the Perspective of Three-Dimensional Nonlinear Elasticity
,”
J. Elasticity
,
111
(
1
), pp.
91
107
.
31.
Verhelst
,
H. M.
,
Möller
,
M.
,
Den Besten
,
J.
,
Mantzaflaris
,
A.
, and
Kaminski
,
M.
,
2021
, “
Stretch-Based Hyperelastic Material Formulations for Isogeometric Kirchhoff–Love Shells With Application to Wrinkling
,”
Comput. Aided Des.
,
139
, p.
103075
.
32.
Zheng
,
L.
,
2009
,
Wrinkling of Dielectric Elastomer Membranes
,
California Institute of Technology
,
Pasadena, CA
.
33.
Healey
,
T. J.
,
Li
,
Q.
, and
Cheng
,
R.-B.
,
2013
, “
Wrinkling Behavior of Highly Stretched Rectangular Elastic Films Via Parametric Global Bifurcation
,”
J. Nonlinear Sci.
,
23
(
5
), pp.
777
805
.
34.
Puntel
,
E.
,
Deseri
,
L.
, and
Fried
,
E.
,
2011
, “
Wrinkling of a Stretched Thin Sheet
,”
J. Elasticity
,
105
(
1
), pp.
137
170
.
35.
Vandeparre
,
H.
,
Piñeirua
,
M.
,
Brau
,
F.
,
Roman
,
B.
,
Bico
,
J.
,
Gay
,
C.
,
Bao
,
W.
,
Lau
,
C. N.
,
Reis
,
P. M.
, and
Damman
,
P.
,
2011
, “
Wrinkling Hierarchy in Constrained Thin Sheets From Suspended Graphene to Curtains
,”
Phys. Rev. Lett.
,
106
(
22
), pp.
224301
.
You do not currently have access to this content.