Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The field of negative stiffness structures has recently seen an increase in attention as a result of advancements in additive manufacturing (AM) technology. These advancements have made it possible to produce materials in a more expedient manner. The purpose of this research is to demonstrate a highly tunable and reusable bistable beam design that is based on a double-ring-shaped deformation element that undergoes pure bending, unlike traditional bistable mechanisms with buckling-based deformation elements. Further, an analytical model is developed and then validated by means of experimental and numerical results to precisely predict the snap-through behavior of a beam. It has been shown that the analytical model that was proposed has accuracy in terms of foreseeing the snap-through transition. A detailed study is conducted to explore the influence of geometric parameters on the snap-through characteristics. By carefully modifying these geometric properties, the required mechanical behavior of negative stiffness metamaterial (NSM) may be achieved for specific applications.

References

1.
Zadpoor
,
A. A.
,
2016
, “
Mechanical Meta-Materials
,”
Mater. Horiz.
,
3
(
5
), pp.
371
381
.
2.
Dragone
,
D.
,
Randazzini
,
L.
,
Capace
,
A.
,
Nesci
,
F.
,
Cosentino
,
C.
,
Amato
,
F.
,
De Momi
,
E.
,
Colao
,
R.
,
Masia
,
L.
, and
Merola
,
A.
,
2022
, “
Design, Computational Modelling and Experimental Characterization of Bistable Hybrid Soft Actuators for a Controllable-Compliance Joint of an Exoskeleton Rehabilitation Robot
,”
Actuators
,
11
(
2
), p.
32
.
3.
Hou
,
X.
,
Liu
,
Y.
,
Wan
,
G.
,
Xu
,
Z.
,
Wen
,
C.
,
Yu
,
H.
,
Zhang
,
J. X. J.
,
Li
,
J.
, and
Chen
,
Z.
,
2018
, “
Magneto-Sensitive Bistable Soft Actuators: Experiments, Simulations, and Applications
,”
Appl. Phys. Lett.
,
113
(
22
), p.
221902
.
4.
Yang
,
H.
, and
Ma
,
L.
,
2018
, “
Multi-Stable Mechanical Metamaterials With Shape-Reconfiguration and Zero Poisson's Ratio
,”
Mater. Des.
,
152
, pp.
181
190
.
5.
Wu
,
J.
,
Li
,
J.
, and
Yan
,
S.
,
2014
, “
Design of Deployable Bistable Structures for Morphing Skin and Its Structural Optimization
,”
Eng. Optim.
,
46
(
6
), pp.
745
762
.
6.
Chen
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically With Multi-Material 3D Printing
,”
Sci. Rep.
,
7
(
1
), p.
45671
.
7.
Liu
,
M.
,
Domino
,
L.
,
Dupont de Dinechin
,
I.
,
Taffetani
,
M.
, and
Vella
,
D.
,
2023
, “
Snap-Induced Morphing: From a Single Bistable Shell to the Origin of Shape Bifurcation in Interacting Shells
,”
J. Mech. Phys. Solids
,
170
, p.
105116
. .
8.
Hu
,
N.
,
Li
,
B.
,
Bai
,
R.
,
Xie
,
K.
, and
Chen
,
G.
,
2023
, “
A Torsion-Bending Antagonistic Bistable Actuator Enables Untethered Crawling and Swimming of Miniature Robots
,”
Research
,
6
, p.
0116
.
9.
Patel
,
D. K.
,
Huang
,
X.
,
Luo
,
Y.
,
Mungekar
,
M.
,
Jawed
,
M. K.
,
Yao
,
L.
, and
Majidi
,
C.
,
2023
, “
Highly Dynamic Bistable Soft Actuator for Reconfigurable Multimodal Soft Robots
,”
Adv. Mater. Technol.
,
8
(
2
), p.
2201259
.
10.
Zhang
,
Z.
,
Li
,
X.
,
Yu
,
X.
,
Chai
,
H.
,
Li
,
Y.
,
Wu
,
H.
, and
Jiang
,
S.
,
2019
, “
Magnetic Actuation Bionic Robotic Gripper With Bistable Morphing Structure
,”
Compos. Struct.
,
229
, p.
111422
.
11.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
12.
Ratnayake
,
D.
,
Derakhshani
,
M.
,
Berfield
,
T. A.
, and
Walsh
,
K. M.
,
2020
, “
Bistability Study of Buckled MEMS Diaphragms
,”
J. Phys. Commun.
,
4
(
10
), p.
105008
.
13.
Wang
,
K.
,
Hu
,
T.
,
Zhao
,
Y.
,
Ren
,
W.
, and
Liu
,
J.
,
2022
, “
Design of a Double-Layer Electrothermal MEMS Safety and Arming Device With a Bistable Mechanism
,”
Micromachines (Basel)
,
13
(
7
), p.
1076
.
14.
Raney
,
J. R.
,
Nadkarni
,
N.
,
Daraio
,
C.
,
Kochmann
,
D. M.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2016
, “
Stable Propagation of Mechanical Signals in Soft Media Using Stored Elastic Energy
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
35
), pp.
9722
9727
.
15.
Gulnizkij
,
N.
, and
Gerlach
,
G.
,
2020
, “
Bistable Threshold Humidity Sensor Switch With Rectangular Bimorph Bending Plate
,”
Micromachines (Basel)
,
11
(
6
), p.
569
.
16.
Andò
,
B.
,
Baglio
,
S.
,
Bulsara
,
A. R.
, and
Marletta
,
V.
,
2014
, “
A Bistable Buckled Beam Based Approach for Vibrational Energy Harvesting
,”
Sens. Actuators A Phys.
,
211
, pp.
153
161
.
17.
Pan
,
D.
, and
Dai
,
F.
,
2018
, “
Design and Analysis of a Broadband Vibratory Energy Harvester Using Bi-Stable Piezoelectric Composite Laminate
,”
Energy Convers. Manag.
,
169
, pp.
149
160
.
18.
Zhang
,
Y.
,
Tichem
,
M.
, and
van Keulen
,
F.
,
2021
, “
A Novel Design of Multi-Stable Metastructures for Energy Dissipation
,”
Mater. Des.
,
212
, p.
110234
.
19.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
20.
Ma
,
H.
,
Wang
,
K.
,
Zhao
,
H.
,
Hong
,
Y.
,
Zhou
,
Y.
,
Xue
,
J.
,
Li
,
Q.
,
Wang
,
G.
, and
Yan
,
B.
,
2023
, “
Energy Dissipation in Multistable Auxetic Mechanical Metamaterials
,”
Compos. Struct.
,
304
, p.
116410
.
21.
Tan
,
X.
,
Wang
,
B.
,
Chen
,
S.
,
Zhu
,
S.
, and
Sun
,
Y.
,
2019
, “
A Novel Cylindrical Negative Stiffness Structure for Shock Isolation
,”
Compos. Struct.
,
214
, pp.
397
405
.
22.
Yan
,
W.
,
Yu
,
Y.
, and
Mehta
,
A.
,
2019
, “
Analytical Modeling for Rapid Design of Bistable Buckled Beams
,”
Theor. Appl. Mech. Lett.
,
9
(
4
), pp.
264
272
.
23.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
24.
Gao
,
R.
,
Guo
,
S.
,
Tian
,
X.
, and
Liu
,
S.
,
2021
, “
A Negative-Stiffness Based 1D Metamaterial for Bidirectional Buffering and Energy Absorption With State Recoverable Characteristic
,”
Thin-Walled Struct.
,
169
, p.
108319
.
25.
Findeisen
,
C.
,
Hohe
,
J.
,
Kadic
,
M.
, and
Gumbsch
,
P.
,
2017
, “
Characteristics of Mechanical Metamaterials Based on Buckling Elements
,”
J. Mech. Phys. Solids
,
102
, pp.
151
164
.
26.
Dave
,
H.
,
Patel
,
S.
, and
Desai
,
K.
,
2024
, “
Multi-Stable Negative Stiffness Structure and Mechanical Logic Gates,”
Indian Patent Application, Application No. 202421004116.
27.
Srinath
,
L. S.
,
2009
,
Advanced Mechanics of Solids
, 3 ed.,
Tata McGraw-Hill Publishing Company Limited
,
New Delhi
.
You do not currently have access to this content.