Abstract

The buoyancy control mechanism is critical for undersea robots to achieve effective vertical motion. However, current buoyancy control mechanisms are associated with problems such as complex design, bulky structure, noisy operation, and slow response. Inspired by the swim bladder of natural fish, we develop an artificial swim bladder, using dual membranes of the dielectric elastomer, which exhibit interesting attributes, including fast response, light weight, silent operation, especially large volume change. Both the experiments and theoretical simulations are conducted to analyze the performance of this artificial swim bladder, and they quantitatively agree with each other. This artificial swim bladder of dual membranes is capable of large voltage-induced volume change, 112% larger than the conventional single-membrane design. Consequently, this soft actuator can generate a buoyancy force of 0.49 N. This artificial swim bladder demonstrates effective up-and-down motion in water, due to its large reversible volume change. Future work includes adding horizontal-motion and turning capabilities to the existing robotic structure, so that the soft robotic fish can achieve successful navigation in undersea environments.

References

1.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspiration Biomimetics
,
6
(
3
), p.
036004
. 10.1088/1748-3182/6/3/036004
2.
Fish
,
F. E.
, and
Kocak
,
D. M.
,
2011
, “
Biomimetics and Marine Technology: An Introduction
,”
Mar. Technol. Soc. J.
,
45
(
4
), pp.
8
13
. 10.4031/MTSJ.45.4.14
3.
Inoue
,
T.
,
Shibuya
,
K.
, and
Nagano
,
A.
,
2010
, “
Underwater Robot with a Buoyancy Control System Based on the Spermaceti Oil Hypothesis Development of the Depth Control System
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
Silver Spring, MD
,
Oct. 18–22
, pp.
1102
1107
.
4.
McFarland
,
D.
,
Gilhespy
,
I.
, and
Honary
,
E.
,
2003
, “
DIVEBOT: A Diving Robot with a Whale-Like Buoyancy Mechanism
,”
Robotica
,
21
(
4
), p.
S026357470300496X
. 10.1017/S026357470300496X
5.
Laine
,
J. L.
,
Nichols
,
S. A.
,
Novick
,
D. K.
,
O’Malley
,
P. D.
,
Copeland
,
D.
,
Arroyo
,
A. A.
, and
Nechyba
,
M. C.
,
2015
,
SubjuGator: A Highly Maneuverable, Intelligent Underwater Vehicle
. www.mil.ufl. edu/publications/fcrar00/subjugator.pdf
6.
Guo
,
S.
,
Sugimoto
,
K.
,
Hata
,
S.
,
Su
,
J.
, and
Oguro
,
K.
,
2000
, “
A New Type of Underwater Fish-Like Microrobot
,”
Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113)
,
IEEE
,
Silver Spring, MD
,
Oct. 31–Nov. 5
, pp.
867
872
.
7.
Davis
,
R. E.
,
Eriksen
,
C. C.
, and
Jones
,
C. P.
,
2002
, “Autonomous Buoyancy-Driven Underwater Vehicle Gliders,”
Technology and Applications of Autonomous Underwater Vehicles
,
G.
Griffiths
, ed.,
Taylor & Francis
, pp.
37
62
.
8.
Evans
,
D. H.
,
Claiborne
,
J. B.
, and
Currie
,
S.
,
2013
,
The Physiology of Fishes
,
CRC Press
,
Boca Raton, FL.
9.
Robertson
,
G. N.
,
Lindsey
,
B. W.
,
Dumbarton
,
T. C.
,
Croll
,
R. P.
, and
Smith
,
F. M.
,
2008
, “
The Contribution of the Swimbladder to Buoyancy in the Adult Zebrafish (Danio rerio): A Morphometric Analysis
,”
J. Morphol.
,
269
(
6
), pp.
666
673
. 10.1002/jmor.10610
10.
L
,
C.
,
O
,
M.
, and
C
,
G.
,
2001
, “
An Experimental and Theoretical Analysis of the Effect of Added Weight on the Energetics and Hydrostatic Function of the Swimbladder of European Sea Bass (Dicentrarchus labrax)
,”
Mar. Biol.
,
139
(
1
), pp.
13
17
. 10.1007/s002270100562
11.
Finney
,
J. L.
,
Robertson
,
G. N.
,
McGee
,
C. A. S.
,
Smith
,
F. M.
, and
Croll
,
R. P.
,
2006
, “
Structure and Autonomic Innervation of the Swim Bladder in the Zebrafish (Danio rerio)
,”
J. Comp. Neurol.
,
495
(
5
), pp.
587
606
. 10.1002/cne.20948
12.
Katzschmann
,
R. K.
,
DelPreto
,
J.
,
MacCurdy
,
R.
, and
Rus
,
D.
,
2018
, “
Exploration of Underwater Life With an Acoustically Controlled Soft Robotic Fish
,”
Sci. Robot.
,
3
(
16
), p.
eaar3449
. 10.1126/scirobotics.aar3449
13.
Cao
,
J.
,
Qin
,
L.
,
Liu
,
J.
,
Ren
,
Q.
,
Foo
,
C. C.
,
Wang
,
H.
,
Lee
,
H. P.
, and
Zhu
,
J.
,
2018
, “
Untethered Soft Robot Capable of Stable Locomotion Using Soft Electrostatic Actuators
,”
Extreme. Mech. Lett.
,
21
, pp.
9
16
. 10.1016/j.eml.2018.02.004
14.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
. 10.1002/adma.201504264
15.
McKay
,
T. G.
,
O’Brien
,
B. M.
,
Calius
,
E. P.
, and
Anderson
,
I. A.
,
2011
, “
Soft Generators Using Dielectric Elastomers
,”
Appl. Phys. Lett.
,
98
(
14
), pp.
2009
2012
. 10.1063/1.3572338
16.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted?
,”
IEEE/ASME Trans. Mech.
,
16
(
1
), pp.
33
41
. 10.1109/TMECH.2010.2089635
17.
Mao
,
G.
,
Huang
,
X.
,
Liu
,
J.
,
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2015
, “
Dielectric Elastomer Peristaltic Pump Module With Finite Deformation
,”
Smart Mater. Struct.
,
24
(
7
), p.
075026
. 10.1088/0964-1726/24/7/075026
18.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
,
Luo
,
Y.
,
Xie
,
T.
, and
Yang
,
W.
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
. 10.1126/sciadv.1602045
19.
Gu
,
G.
,
Zou
,
J.
,
Zhao
,
R.
,
Zhao
,
X.
, and
Zhu
,
X.
,
2018
, “
Soft Wall-Climbing Robots
,”
Sci. Robot.
,
3
(
25
), p.
eaat2874
.
20.
Godaba
,
H.
,
Li
,
J.
,
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
624
631
. 10.1109/LRA.2016.2522498
21.
Tang
,
Y.
,
Qin
,
L.
,
Li
,
X.
,
Meng Chew
,
C.
, and
Zhu
,
J.
,
2017
, “
A Frog-Inspired Swimming Robot Based on Dielectric Elastomer Actuators
,”
Proceedings of the 2017 IEEE/RSJ International Conference Intelligent Robots Systems
,
Vancouver, British Columbia, Canada
,
Sept. 24–28
, pp.
1
6
.
22.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
,
Pei
,
Q.
, and
Joseph
,
J. P.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
. 10.1126/science.287.5454.836
23.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
. 10.1016/j.jmps.2012.09.006
24.
Chen
,
F.
,
Cao
,
J.
,
Zhang
,
L.
,
Zhang
,
H.
,
Wang
,
M. Y.
,
Zhu
,
J.
, and
Zhang
,
Y. F.
,
2017
, “
Networked Soft Actuators with Large Deformations
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
,
Silver Spring, MD
,
May 29–June 3
, pp.
4332
4337
.
25.
Zhang
,
H.
,
Wang
,
Y.
,
Godaba
,
H.
,
Khoo
,
B. C.
,
Zhang
,
Z.
, and
Zhu
,
J.
,
2017
, “
Harnessing Dielectric Breakdown of Dielectric Elastomer to Achieve Large Actuation
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121011
. 10.1115/1.4038174
26.
Li
,
Z.
,
Wang
,
Y.
,
Foo
,
C. C.
,
Godaba
,
H.
,
Zhu
,
J.
, and
Yap
,
C. H.
,
2017
, “
The Mechanism for Large-Volume Fluid Pumping via Reversible Snap-Through of Dielectric Elastomer
,”
J. Appl. Phys.
,
122
(
8
), p.
084503
. 10.1063/1.4985827
27.
Wang
,
Y.
,
Li
,
Z.
,
Qin
,
L.
,
Caddy
,
G.
,
Yap
,
C. H.
, and
Zhu
,
J.
,
2018
, “
Dielectric Elastomer Fluid Pump of High Pressure and Large Volume Via Synergistic Snap-Through
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101003
. 10.1115/1.4040478
28.
Liu
,
B.
,
Chen
,
F.
,
Wang
,
S.
,
Fu
,
Z.
,
Cheng
,
T.
, and
Li
,
T.
,
2017
, “
Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091005
. 10.1115/1.4037147
29.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
. 10.1039/C1SM06736B
30.
Zhu
,
J.
,
Cai
,
S.
, and
Suo
,
Z.
,
2010
, “
Resonant Behavior of a Membrane of a Dielectric Elastomer
,”
Int. J. Solids Struct.
,
47
(
24
), pp.
3254
3262
. 10.1016/j.ijsolstr.2010.08.008
31.
Godaba
,
H.
,
Foo
,
C. C.
,
Zhang
,
Z. Q.
,
Khoo
,
B. C.
, and
Zhu
,
J.
,
2014
, “
Giant Voltage-Induced Deformation of a Dielectric Elastomer Under a Constant Pressure
,”
Appl. Phys. Lett.
,
105
(
11
), p.
112901
. 10.1063/1.4895815
32.
Chen
,
F.
,
Cao
,
J.
,
Zhang
,
L.
,
Zhang
,
H.
,
Wang
,
M. Y.
,
Zhu
,
J.
, and
Zhang
,
Y. F.
,
2017
, “
Networked Soft Actuators with Large Deformations
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
IEEE
,
Silver Spring, MD
,
May 29–June 3
, pp.
4332
4337
.
33.
Wang
,
Y.
,
Gupta
,
U.
,
Parulekar
,
N.
, and
Zhu
,
J.
,
2019
, “
A Soft Gripper of Fast Speed and Low Energy Consumption
,”
Sci. China Technol. Sci.
,
62
(
1
), pp.
31
38
. 10.1007/s11431-018-9358-2
You do not currently have access to this content.