Abstract
This review covers studies dealing with simplified analytical models for ballistic penetration of an impactor into different solid media, namely, metals, soil, concrete, and composites at high speeds, but not at hypervelocities. The overview covers mainly papers that were published in the last decade, but not analyzed in previous reviews on impact dynamics. Both mathematical models and their engineering applications are considered. The review covers 280 citations.
Issue Section:
Review Articles
1.
Kennedy
, R.
P.
, 1976,
“A Review of Procedures for the Analysis and Design of
Concrete Structures to Resist Missile Impact Effects
,”
Nucl. Eng. Des.
0029-5493,
37
(2
), pp.
183
–203
.2.
Backman
,
M.
, and
Goldsmith
,
W.
,
1978, “The Mechanics of
Penetration of Projectiles Into Targets
,” Int. J.
Eng. Sci.
0020-7225,
16
(1
), pp.
1
–99
.3.
Jonas
, G.
H.
, and Zukas
, J.
A.
, 1978,
“Mechanics of Penetration: Analysis and
Experiment
,” Int. J. Eng. Sci.
0020-7225,
16
(1
), pp.
879
–903
.4.
Zukas
, J.
A.
, 1982,
“Penetration and Perforation of Solids
,”
Impact Dynamics
, J. A.
Zukas
,
T.
Nicholas
, H.
F.
Swift
, L.
B.
Greszczuk
, and
D. R.
Curran
, eds.,
Wiley
, New York.5.
Brown
, S.
J.
, 1986,
“Energy Release Protection for Pressurized Systems, Part 2:
Review of Studies Into Impact/Terminal Ballistics
,”
Appl. Mech. Rev.
0003-6900, 39
(2
), Part 1, pp.
177
–202
.6.
Anderson
, C.
E.
, Jr., and
Bodner
, S.
R.
, 1988,
“Ballistic Impact: The Status of Analytical and Numerical
Modeling
,” Int. J. Impact Eng.
0734-743X, 11
(1
), pp.
33
–40
.7.
Heuzé
, F.
E.
, 1989,
“An Overview of Projectile Penetration Into Geological
Materials, With Emphasis on Rocks
,” Report No. UCRL-101559,
LLNL.8.
Recht
, R.
F.
, 1990,
“High Velocity Impact Dynamics: Analytical Modeling of Plate
Penetration Dynamics
,” High Velocity Impact
Dynamics
, J. A.
Zukas
(ed.),
Wiley
, New York.9.
Zukas
, J.
A.
, and Walters
, W.
P.
, 1990,
“Analytical Models for Kinetic Energy
Penetration
,” In: High Velocity Impact
Dynamics
, J. A.
Zukas
(ed),
Wiley
, New York.10.
Abrate
,
S.
,
1991, “Impact on
Laminated Composite Materials
,” Appl. Mech.
Rev.
0003-6900, 44
(4
), pp.
155
–190
.11.
Abrate
,
S.
,
1994, “Impact on
Laminated Composites: Recent Advances
,” Appl. Mech.
Rev.
0003-6900, 47
(11
), pp.
517
–544
.12.
Dancygier
, A.
N.
, and Yankelevsky
,
D. Z.
, 1996,
“High Strength Concrete Response to Hard Projectile
Impact
,” Int. J. Impact Eng.
0734-743X, 18
(6
), pp.
583
–599
.13.
Corbett
, G.
G.
, Reid
, S.
R.
, and Johnson
,
W.
,
1996, “Impact Loading of
Plates and Shells by Free-Flying Projectiles: A Review
,”
Int. J. Impact Eng.
0734-743X,
18
(2
), pp.
141
–230
.14.
Abrate
,
S.
,
1998, Impact on Composite
Structures
, Cambridge Univ. Press
,
Cambridge.15.
Teland
, J.
A.
, 1998,
“A Review of Empirical Equations for Missile Impact Effects
on Concrete
,” FFI/RAPPORT-97/05856, Norwegian Defence Res.
Establishment.16.
Børvik
,
T.
,
Langseth
,
M.
,
Hopperstad
, O.
S.
, and Malo
, K.
A.
, 1998,
“Empirical Equations for Ballistic Penetration of Metal
Plates
,” Fortifikatorisk Notat No. 260/98, The Norwegian
Defence Construction Service, Central Staff—Technical Division, Oslo,
Norway.17.
Kasano
,
H.
,
1999, “Recent Advances
in High-Velocity Impact Perforation of Fiber Composite
Laminates
,” JSME Int. J., Ser. A
1340-8046, 42
(2
), pp.
147
–157
.18.
Goldsmith
,
W.
,
1999, “Non-Ideal
Projectile Impact on Targets
,” Int. J. Impact
Eng.
0734-743X,
22
(2-3
), pp.
95
–395
.19.
Cheeseman
, B.
A.
, and Bogetti
, T.
A.
, 2003,
“Ballistic Impact Into Fabric and Compliant Composite
Laminates
,” Comput. Struct.
0045-7949, 61
(1-2
), pp.
161
–173
.20.
Phoenix
, S.
L.
, and Porwal
, P.
K.
, 2003,
“A New Membrane Model for the Ballistic Impact Response and
v50 Performance of Multi-Ply Fibrous Systems
,” Int.
J. Solids Struct.
0020-7683, 40
(24
), pp.
6723
–6765
.21.
Bunimovich
,
A.
, and
Dubinsky
,
A.
,
1995, Mathematical Models and
Methods of Localized Interaction Theory
, World
Scientific
, Singapore.22.
Bunimovich
,
A.
, and
Dubinsky
,
A.
,
1996, “Development,
Current State of the Art, and Applications of Local Interaction Theory:
Review
,” Fluid Dyn. Res.
0169-5983, 31
(3
), pp.
339
–349
.23.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1997, “Shape
Optimization of High Velocity Impactors Using Analytical
Models
,” Int. J. Fract.
0376-9429, 87
(1
), pp.
L7
–L10
.24.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1997, “Area Rules for
Penetrating Bodies
,” Theor. Appl. Fract.
Mech.
0167-8442, 26
(3
), pp.
193
–198
.25.
Li
, Q.
M.
, Weng
, H.
J.
, and Chen
, X.
W.
, 2004,
“A Modified Model for the Penetration Into Moderately Thick
Plates by a Rigid, Sharp-Nosed Projectile
,” Int. J.
Impact Eng.
0734-743X, 30
(2
), pp.
193
–204
.26.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1997, “Optimal 3D
Impactors Penetrating Into Layered Targets
,” Theor.
Appl. Fract. Mech.
0167-8442, 27
(3
), pp.
161
–166
.27.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1998, “On the Ballistic
Resistance of Multi-Layered Targets With Air Gaps
,”
Int. J. Solids Struct.
0020-7683, 35
(23
), pp.
3097
–3103
.28.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2001, “Shape
Optimization of Penetrator Nose
,” Theor. Appl.
Fract. Mech.
0167-8442, 35
(3
), pp.
261
–270
.29.
Chen
, X.
W.
, and Li
, Q.
M.
, 2002,
“Deep Penetration of a Non-Deformable Projectile With
Different Geometrical Characteristics
,” Int. J.
Impact Eng.
0734-743X,
27
(6
), pp.
619
–637
.30.
Nishiwaki
,
J.
,
1951, “Resistance to the
Penetration of a Bullet Through an Aluminium Plate
,”
J. Phys. Soc. Jpn.
0031-9015, 5
, pp.
374
–378
.31.
Chernyi
, G.
G.
, 1969,
Introduction to Hypersonic Flow
, Academic
Press
, New York.32.
Vitman
, F.
F.
, and Stepanov
,
V. A.
, 1959,
“Effect of the Strain Rate on the Resistance of Metals to
Deformation at Impact Velocities of 100-1000m∕s
,” In:
Nekotoryje Problemy Prochnosti Tvjordogo Tela.
USSR Acad. of Sci.
, Moscow-Leningrad, pp.
207
–221
(in Russian).33.
Golubev
, V.
K.
, and Medvedkin
,
V. A.
, 2001,
“Penetration of a Rigid Rod Into a Thick Steel Plate at
Elevated Velocities
,” Strength Mater.
0039-2316, 33
(4
), pp.
400
–405
.34.
Landgrov
, I.
F.
, and Sarkisyan
,
O. A.
, 1984,
“Piercing Plastic-Material Barriers With a Rigid
Punch
,” J. Appl. Mech. Tech. Phys.
0021-8944, 5
, pp.
771
–773
.35.
Heimdahl
, O. E.
R.
, and Schulz
, J.
C.
, 1986,
“A Note on the Obtainment of Instantaneous Penetration
Information From Final Penetration Data
,” ASME J.
Appl. Mech.
0021-8936, 53
(1
), pp.
226
–227
.36.
Mileiko
, S.
T.
, and Sarkisyan
,
O. A.
, 1981,
“Phenomenological Model of Punch-Through
,”
J. Appl. Mech. Tech. Phys.
0021-8944, 5
, pp.
711
–713
.37.
Mileiko
, S.
T.
, Sarkisyan
, O.
A.
, and Kondakov
,
S. F.
, 1994,
“Ballistic Limits of Al-6% Mg Allow Laminated by Diffusion
Bonding
,” Theor. Appl. Fract. Mech.
0167-8442, 21
(1
), pp.
9
–16
.38.
Forrestal
, M.
J.
, Lee
, L.
M.
, Jenrette
, B.
D.
, and Setchell
,
R. E.
, 1984,
“Gas-Gun Experiments Determine Forces on Penetrators Into
Geological Targets
,” ASME J. Appl. Mech.
0021-8936, 51
(3
), pp.
602
–607
.39.
Forrestal
, M.
J.
, Lee
, L.
M.
, and Jenrette
,
B. D.
, 1986,
“Laboratory-Scale Penetration Experiments Into Geological
Targets to Impact Velocities of 2.1km∕s
,” ASME J.
Appl. Mech.
0021-8936, 53
(2
), pp.
317
–320
.40.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2002, “Optimal Nose
Geometry of the Impactor Against FRP Laminates
,”
Compos. Struct.
0263-8223,
55
(1
), pp.
73
–80
.41.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2002, “Optimization of
the Nose Shape of an Impactor Against a Semi-Infinite FRP
Laminate
,” Compos. Sci. Technol.
0266-3538,
62
(5
), pp.
663
–667
.42.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2002, “A Model for
Predicting Penetration and Perforation of FRP Laminates by 3-D
Impactors
,” Compos. Struct.
0263-8223,
56
(3
), pp.
243
–248
.43.
Sagomonyan
, A.
Y.
, 1960,
“Penetration of Sharp Bodies of Revolution Into
Soils
,” Dokl. Akad. Nauk SSSR
0002-3264, 134
(6
), pp.
1320
–1323
(in Russian).44.
Rakhmatulin
, Kh.
A.
, Sagomonian
, A.
Ya.
, and Alekseev
,
N. A.
, 1964,
Soils Dynamics
, Moscow Univ.
Publ.
, Moscow (in Russian).45.
Yankelevsky
, D.
Z.
, and Adin
, M.
A.
, 1980,
“A Simplified Analytical Method for Soil Penetration
Analysis
,” Int. J. Numer. Analyt. Meth.
Geomech.
0363-9061,
4
(3
), pp.
233
–254
.46.
Bishop
, R.
F.
, Hill
,
R.
, and
Mott
, N.
F.
, 1945,
“The Theory of Indentation and Hardness
Tests
,” Proc. Phys. Soc. London
0370-1328, 57
, Part 3, pp.
147
–155
.47.
Hopkins
, H.
G.
, 1960,
“Dynamic Expansion of Spherical Cavities in
Metals
,” Progress in Solid Mechanics
, 1,
R.
Hill
, and I.
N.
Sneddon
, eds.,
Pergamon Press
, Oxford, pp.
84
–164
.48.
49.
Teland
, J.
A.
, 1999,
“A Review of Analytical Penetration
Mechanics
,” FFI/RAPPORT-99/01264, Norwegian Defence Res.
Establishment.50.
Satapathy
,
S.
,
1997, “Application of
Cavity Expansion Analysis to Penetration Problems
,”
Institute for Adv. Technology, The Univ. of Texas at
Austin
, Report IAT.R-0136.51.
Isbell
, W.
M.
, Anderson
, C.
E.
, Asay
, J.
R.
, Bless
, S.
J.
, Grady
, D.
E.
, and Sternberg
,
J.
,
1992, “Penetration
Mechanics Research in the Former Soviet Union. Sci. Applications Int.
Corp.
,” San Diego, CA. Tech. Assessment
Rept.52.
Lambert
, J.
P.
, and Jonas
, G.
H.
, 1976,
“Towards Standardization of in Terminal Ballistic Testing:
Velocity Representation
,” Report BRL-R-1852,
Ballistic Res. Lab.
, Aberdeen,
MD.53.
Lambert
, J.
P.
, 1978,
“A Residual Velocity Predictive Model for Long Rod
Penetrators
,” Report ARBRL-MR-02828, Ballistic
Res. Lab.
, Aberdeen, MD.54.
Recht
, R.
F.
, and Ipson
, T.
W.
, 1963,
“Ballistic Perforation Dynamics
,”
ASME J. Appl. Mech.
0021-8936, 30
(3
), pp.
384
–390
.55.
Ipson
, T.
W.
, and Recht
, R.
F.
, 1975,
“Ballistic Penetration Resistance and Its
Measurement
,” Exp. Mech.
0014-4851, 15
(7
), pp.
249
–257
.56.
Hetherington
, J.
G.
, and Rajagopalan
,
B. P.
, 1991,
“An Investigation Into the Energy Absorbed During Ballistic
Perforation of Composite Armors
,” Int. J. Impact
Eng.
0734-743X, 11
(1
), pp.
33
–40
.57.
Hetherington
, J.
G.
, 1992,
“Correspondence on An Investigation Into the Energy Absorbed
During Ballistic Perforation of Composite Armors
,”
Int. J. Impact Eng.
0734-743X, 12
(2
), pp.
325
–327
.58.
Hetherington
, J.
G.
, 1996,
“Energy and Momentum Changes During Ballistic
Perforation
,” Int. J. Impact Eng.
0734-743X, 18
(3
), pp.
319
–337
.59.
Mileiko
, S.
T.
, 1997,
Metal and Ceramic Based Composites
,
Elsevier
, Amsterdam.60.
Nixdorff
,
K.
,
1983, “Some Remarks on
the Penetration Theory of J. Awerbuch, and S. R. Bodner
,”
Trans. CSME
, 7
(3
), pp.
148
–153
.61.
Nixdorff
,
K.
,
1984, “Application of
the Penetration Theory of J. Awerbuch, and S. R. Bodner on Multilayered
Targets
,” Z. Angew. Math. Mech.
0044-2267, 64
(4
), pp.
T147
–T149
.62.
Nixdorff
,
K.
,
1984, “Some Applications
of the Impact Theory of J. Awerbuch, and S. R. Bodner
,”
Trans. CSME
, 8
(1
), pp.
16
–20
.63.
Nixdorff
,
K.
,
1987, “Discussion of Two
Theories on the Penetration of Multilayer Metallic Targets
,”
Trans. CSME
, 11
(3
), pp.
161
–178
.64.
Awerbuch
,
J.
,
1970, “A Mechanical
Approach to Projectile Penetration
,” Isr. J.
Technol.
0021-2202, 8
(4
), pp.
375
–383
.65.
Awerbuch
,
J.
, and
Bodner
, S.
R.
, 1974,
“Analysis of the Mechanics of Perforation of Projectiles in
Metallic Plates
,” Int. J. Solids Struct.
0020-7683, 10
(6
), pp.
671
–684
.66.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2002, “On the
Lambert-Jonas Approximation for Ballistic Impact
,”
Mech. Res. Commun.
0093-6413,
29
(2-3
), pp.
137
–139
.67.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1998, “A Model of High
Speed Penetration Into Ductile Targets
,” Theor.
Appl. Fract. Mech.
0167-8442, 28
(3
), pp.
237
–239
.68.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2001, “A Class of Models
Implying the Lambert-Jonas Relation
,” Int. J. Solids
Struct.
0020-7683, 38
(40-41
), pp.
7113
–7119
.69.
Nennstiel
,
R.
,
1999, “Prediction of the
Remaining Velocity of Some Handgun Bullets Perforating Thin Metal
Sheets
,” Forensic Sci. Int.
0379-0738, 102
(2-3
), pp.
121
–132
.70.
Grabarek
, C.
L.
, 1971,
“Penetration of Armor by Steel and High Density Penetrators.
BRL MR 2134
,” Ballistic Res. Lab., Aberdeen Proving Ground,
MD.71.
Anderson
, C.
E.
, Jr.,
Hohler
,
V.
,
Walker
, J.
D.
, and Stilp
, A.
J.
, 1999,
“The Influence of Projectile Hardness on Ballistic
Performance
,” Int. J. Impact Eng.
0734-743X, 22
(6
), pp.
619
–632
.72.
Sagomonyan
, A.
Y.
, 1974,
Penetration of Solids into Compressible Continuous Media
,
Moscow Univ. Publ.
, Moscow (In
Russian).73.
Sagomonyan
, A.
Y.
, 1988,
Dynamics of Barriers Perforation
, Moscow
Univ. Publ.
, Moscow (in Russian).74.
Bagdoev
, A.
G.
, and Vantsyan
,
A. A.
, 1983,
“Penetration of a Slender Body Into Elastic Anisotropic
Media
,” Izvestija Akademii Nauk Armjanskoj SSR,
Series: Mekhanika
, 36
(6
), pp.
23
–30
(in Russian).75.
Voeikov
, I.
V.
, and Sagomonyan
,
A. Y.
, 1985,
“Puncture of a Barrier With Brittle Fracture by a Rigid
Cone
,” Mech. Solids
0025-6544, 20
(6
), pp.
184
–186
.76.
Zvyagin
, A.
V.
, and Sagomonyan
,
A. Y.
, 1985,
“Oblique Impact Against a Plate of Ideally Plastic
Material
,” Mech. Solids
0025-6544, 20
(1
), pp.
149
–154
.77.
Romanova
, S.
V.
, and Sagomonyan
,
A. Y.
, 1989,
“Interaction of a Rigid Body With a Deformable Obstacle in
Oblique Collision
,” Moscow Univ. Mech. Bull. (Engl.
Transl.)
0027-1314, 44
(6
), pp.
1
–7
.78.
Sagomonyan
, A.
Y.
, and Dvorkin
, Y.
P.
, 1989,
“Penetrating an Obstacle by a Normal Impact of a Deformable
Truncated Cone
,” Moscow Univ. Mech. Bull. (Engl.
Transl.)
0027-1314, 44
(1
), pp.
8
–18
.79.
Sagomonyan
, A.
Y.
, 1997,
“High-Speed Penetration of a Solid Sphere Into the
Soil
,” Moscow Univ. Mech. Bull. (Engl.
Transl.)
0027-1314, 52
(3
), pp.
9
–13
.80.
Luk
, V.
K.
, and Forrestal
,
M. J.
, 1987,
“Penetration Into Semi-Infinite Reinforced-Concrete Targets
With Spherical and Ogival Nose Projectiles
,” Int. J.
Impact Eng.
0734-743X, 6
, pp.
291
–301
.81.
Luk
,
V. K.
, and Forrestal
,
M. J.
, 1989,
“Comment on Penetration Into Semi-Infinite
Reinforced-Concrete Targets With Spherical and Ogival Nose
Projectiles
,” Int. J. Impact Eng.
0734-743X, 6
, pp.
291
–301
, Luk
,
V. K.
, and Forrestal
,
M. J.
,1987,
Int. J. Impact Eng.
0734-743X, 8
(1
), pp.
83
–84
.82.
Forrestal
, M.
J.
, and Luk
, V.
K.
, 1988,
“Dynamic Spherical Cavity-Expansion in a Compressible
Elastic-Plastic Solid
,” ASME J. Appl. Mech.
0021-8936, 55
(2
), pp.
275
–279
.83.
Forrestal
, M.
J.
, Tzou
, D.
Y.
, Askar
,
E.
, and
Longcope
, D.
B.
, 1995,
“Penetration Into Ductile Metal Targets With Rigid
Spherical-Nose Rods
,” Int. J. Impact Eng.
0734-743X, 16
(5/6
), pp.
699
–710
.84.
Luk
, V.
K.
, Forrestal
, M.
J.
, and Amos
, D.
E.
, 1991,
“Dynamic Spherical Cavity Expansion of Strain-Hardening
Materials
,” ASME J. Appl. Mech.
0021-8936, 58
(1
), pp.
1
–6
.85.
Forrestal
, M.
J.
, Brar
, N.
S.
, and Luk
, V.
K.
, 1991,
“Perforation of Strain-Hardening Targets With Rigid
Spherical-Nose Rods
,” ASME J. Appl. Mech.
0021-8936, 58
(1
), pp.
7
–10
.86.
Forrestal
, M.
J.
, and Luk
, V.
K.
, 1992,
“Penetration of 7075-T651 Aluminum Targets With Ogival-Nose
Rods
,” Int. J. Solids Struct.
0020-7683,
29
(14/15
), pp.
1729
–1736
.87.
Forrestal
, M.
J.
, Norwood
, F.
R.
, and Longcope
,
D. B.
, 1981,
“Penetration Into Targets Described by Locked Hydrostats and
Shear Strength
,” Int. J. Solids Struct.
0020-7683, 17
(9
), pp.
915
–924
.88.
Piekutowsli
, A.
J.
, Forrestal
, M.
J.
, Poormon
, K.
L.
, and Warren
, T.
L.
, 1996,
“Perforation of Aluminum Plates With Ogive-Nose Steel Rods at
Normal and Oblique Impacts
,” Int. J. Impact
Eng.
0734-743X, 18
(7-8
), pp.
877
–887
.89.
Forrestal
, M.
J.
, and Luk
, V.
K.
, 1992,
“Penetration Into Soil Targets
,” Int.
J. Impact Eng.
0734-743X, 12
(3
), pp.
427
–444
.90.
Forrestal
, M.
J.
, and Tzou
, D.
Y.
, 1997,
“A Spherical Cavity-Expansion Penetration Model for Concrete
Targets
,” Int. J. Solids Struct.
0020-7683,
34
(31-32
), pp.
4127
–4146
.91.
Warren
, T.
L.
, and Forrestal
,
M. J.
, 1998,
“Effect of Strain Hardening and Strain Rate Sensitivity on
Penetration of Aluminum Targets With Spherical-Nosed Rods
,”
Int. J. Solids Struct.
0020-7683,
35
(28-29
), pp.
3737
–3753
.92.
Littlefield
, D.
L.
, Anderson
, C.
E.
, Jr.,
Partom
,
Y.
, and
Bless
, S.
J.
, 1997,
“The Penetration of Steel Targets Finite in Radial
Extent
,” Int. J. Impact Eng.
0734-743X, 19
(1
), pp.
49
–62
.93.
Partom
,
Y.
,
1996, “Static Cavity
Expansion Model for Partially Confined Targets
,”
Institute for Adv. Technology
, Report IAT.R-0092,
The Univ. of Texas at Austin
.94.
Teland
, J.
A.
, and Sjøl
,
H.
,
2000, “Boundary Effects
in Penetration Into Concrete
,” FFI/RAPPORT-2000/05414,
Norwegian Defence Res.
Establishment
.95.
Warren
, T.
L.
, and Poormon
, K.
L.
, 2001,
“Penetration of 6061-T6511 Aluminum Targets by Ogive-Nosed
VAR 4340 Steel Projectiles at Oblique Angles: Experiments and
Simulations
,” Int. J. Impact Eng.
0734-743X, 25
(10
), pp.
993
–1022
.96.
Longcope
, D.
B.
, Jr.,
Tabbara
, M.
R.
, and Jung
,
J.
,
1999, “Modeling of
Oblique Penetration Into Geologic Targets Using Cavity Expansion Penetrator
Loading With Target Free-Surface Effects
,” Report
SAND99-1104, Sandia National
Laboratories
.97.
Macek
, R.
W.
, and Duffey
, T.
A.
, 2000,
“Finite Cavity Expansion Method for Near-Surface Effects and
Layering During Earth Penetration
,” Int. J. Impact
Eng.
0734-743X, 24
(3
), pp.
239
–258
.98.
Forrestal
, M.
J.
, Longcope
, D.
B.
, and Norwood
, F.
R.
, 1981,
“A Model to Estimate Forces on Conical Penetrators Into Dry
Porous Rock
,” ASME J. Appl. Mech.
0021-8936, 48
(1
), pp.
25
–29
.99.
Forrestal
, M.
J.
, and Longcope
,
D. B.
, 1982,
“Closed-Form Solutions for Forces on Conical-Nosed
Penetrators Into Geological Targets With Constant Shear
Strength
,” Mech. Mater.
0167-6636,
1
(4
), pp.
285
–295
.100.
Forrestal
, M.
J.
, 1983,
“Forces on Conical-Nosed Penetrators Into Target With Contact
Shear Strength
,” Mech. Mater.
0167-6636, 2
, pp.
173
–177
.101.
Forrestal
, M.
J.
, 1986,
“Penetration Into Dry Porous Rock
,”
Int. J. Solids Struct.
0020-7683, 22
(12
), pp.
1485
–1500
.102.
Longcope
, D.
B.
, and Forrestal
,
M. J.
, 1981,
“Closed Form Approximation for Forces on Conical Penetrators
Into Dry Porous Rock
,” ASME J. Appl. Mech.
0021-8936, 48
(4
), pp.
971
–972
.103.
Longcope
, D.
B.
, and Forrestal
,
M. J.
, 1983,
“Penetration of Target Described by a Mohr-Coulomb Failure
Criterion With a Tension Cutoff
,” ASME J. Appl.
Mech.
0021-8936, 50
(2
), pp.
327
–333
.104.
Norwood
, F.
R.
, and Sears
, M.
P.
, 1982,
“A Nonlinear Model for the Dynamics of Penetration Into
Geological Targets
,” ASME J. Appl. Mech.
0021-8936, 49
(1
), pp.
26
–30
.105.
Forrestal
, M.
J.
, Rosenberg
,
Z.
,
Luk
, V.
K.
, and Bless
, S.
J.
, 1987,
“Perforation of Aluminum Plates With Conical-Nosed
Rods
,” ASME J. Appl. Mech.
0021-8936, 54
(1
), pp.
230
–232
.106.
Forrestal
, M.
J.
, Luk
, V.
K.
, and Brar
, N.
S.
, 1990,
“Perforation of Aluminum Armor Plates With Conical-Nose
Projectiles
,” Mech. Mater.
0167-6636,
10
(1-2
), pp.
97
–105
.107.
Rosenberg
,
Z.
, and
Forrestal
, M.
J.
, 1988,
“Perforation of Aluminum Plates With Conical-Nosed
Rods-Additional Data and Discussion
,” ASME J. Appl.
Mech.
0021-8936, 55
(1
), pp.
236
–238
.108.
Luk
, V.
K.
, and Amos
, D.
E.
, 1991,
“Dynamic Cylindrical Cavity Expansion of Compressible
Strain-Hardering Materials
,” ASME J. Appl.
Mech.
0021-8936, 58
(2
), pp.
334
–340
.109.
Warren
, T.
L.
, 1999,
“The Effect of Strain Rate on the Dynamic Expansion of
Cylindrical Cavities
,” ASME J. Appl. Mech.
0021-8936, 66
(3
), pp.
818
–821
.110.
Forrestal
, M.
J.
, Luk
, V.
K.
, and Watts
, H.
A.
, 1988,
“Penetration of Reinforced Concrete With Ogive-Nose
Penetrators
,” Int. J. Solids Struct.
0020-7683, 24
(1
), pp.
70
–87
.111.
Forrestal
, M.
J.
, Okajima
,
K.
, and
Luk
, V.
K.
, 1988,
“Penetration of 6061-T651 Aluminum Target With Rigid Long
Rods
,” ASME J. Appl. Mech.
0021-8936, 55
(4
), pp.
755
–760
.112.
Brown
, K.
H.
, Koteras
, J.
R.
, Longcope
, D.
B.
, and Warren
, T.
L.
, 2003,
“Cavity Expansion: A Library for Cavity Expansion
Algorithms
,” Version 1.0. Report SAND2003-1048,
Sandia National Laboratories
.113.
Sjøl
,
H.
, and
Teland
, J.
A.
, 2000,
“Prediction of Concrete Penetration Using Forrestal’s
Formula
,” FFI/RAPPORT-99/04415, Norwegian
Defence Res. Establishment
.114.
Sjøl
,
H.
,
Teland
, J.
A.
, and Kaldheim
,
Ø.
,
2002, “Penetration Into
Concrete—Analysis of Small Scale Experiments With 12mm
Projectiles
,” FFI/RAPPORT-2002/04867, Norwegian
Defence Res. Establishment
.115.
Teland
, J.
A.
, and Moxnes
, J.
F.
, 2003,
“Analytical Cavity Expansion Penetration Models Compared With
Numerical Simulations
,” FFI/RAPPORT-2003/00934,
Norwegian Defence Res.
Establishment
.116.
Børvik
,
T.
,
Clausen
, A.
H.
, Hopperstad
, O.
S.
, and Langseth
,
M.
,
2004, “Perforation of
AA5083-H116 Aluminium Plates With Conical-Nose Steel
Projectiles—Experimental Study
,” Int. J. Impact
Eng.
0734-743X, 30
(4
), pp.
367
–384
.117.
Forrestal
, M.
J.
, and Longcope
,
D. B.
, 1990,
“Target Strength of Ceramic Materials for High-Velocity
Penetration
,” J. Appl. Phys.
0021-8979,
67
(8
), pp.
3669
–3672
.118.
Satapathy
,
S.
, and
Bless
,
S.
,
1996, “Calculation of
Penetration Resistance of Brittle Materials Using Spherical Cavity Expansion
Analysis
,” Mech. Mater.
0167-6636,
23
(4
), pp.
323
–330
.119.
Satapathy
,
S.
, and
Bless
,
S.
,
2000, “Cavity Expansion
Resistance of Brittle Materials Obeying a Two-Curve Pressure-Shear
Behavior
,” J. Appl. Phys.
0021-8979,
88
(7
), pp.
4004
–4012
.120.
Kartuzov
, V.
V.
, Galanov
, B.
A.
, and Ivanov
, S.
M.
, 1999,
“Concept of Ultimate Fracture Velocity in the Analysis of
Spherical Cavity Expansion in Brittle Materials: Application to Penetration
Problems
,” Int. J. Impact Eng.
0734-743X, 23
(1
), pp.
431
–442
.121.
Kartuzov
, V.
V.
, Galanov
, B.
A.
, and Ivanov
, S.
M.
, 2002,
“Concept of Ultimate Fracture-Front Velocity in Cylindrical
Cavity Expansion in a Brittle Material
,” Strength
Mater.
0039-2316, 34
(3
), pp.
280
–286
.122.
Satapathy
,
S.
,
2001, “Dynamic Spherical
Cavity Expansion in Brittle Ceramics
,” Int. J.
Solids Struct.
0020-7683, 38
(32-33
), pp.
5833
–5845
.123.
Mastilovic
,
S.
, and
Krajcinovic
,
D.
,
1999, “High-Velocity
Expansion of a Cavity Within a Brittle Material
,” J.
Mech. Phys. Solids
0022-5096,
47
(3
), pp.
577
–610
.124.
Mastilovic
,
S.
, and
Krajcinovic
,
D.
,
1999, “Penetration of
Rigid Projectiles Through Quasi-Brittle Materials
,”
ASME J. Appl. Mech.
0021-8936, 66
(3
), pp.
585
–592
.125.
Aptukov
, V.
N.
, 1991,
“Expansion of a Spherical Cavity in a Compressible
Elasto-Plastic Medium. I: The Influence of Mechanical Characteristics, Free
Surface, and Lamination
,” Strength Mater.
0039-2316,
23
(12
), pp.
1262
–1268
.126.
Aptukov
, V.
N.
, 1991,
“Expansion of a Spherical Cavity in a Compressible
Elasto-Plastic Medium. II: Effect of Inertial Forces, Temperature
Effects
,” Strength Mater.
0039-2316,
23
(12
), pp.
1269
–1274
.127.
Aptukov
, V.
N.
, Murzakaev
, A.
V.
, and Fonarev
, A.
V.
, 1992,
Applied Theory of Penetration
, Nauka, Moscow (in
Russian).128.
Kravchenko
, V.
P.
, Skorkin
, N.
A.
, and Sapozhnikov
,
A. A.
, 1994,
“Penetration of a Solid Body of Revolution Into Rock and
Non-Rock Soils
,” Preprint 18, Res. Inst. of Tech. Phys.,
(VNIITF), Cheliabinsk-70 (in Russian).129.
Bashurov
, V.
V.
, Stepanov
, V.
F.
, and Skorkin
, N.
A.
, 1994,
“Calculation of Resistance of Deformable Media to Solids
Penetration
,” Preprint 30, Res. Inst. of Tech. Phys.,
(VNIITF), Cheliabinsk-70 (in Russian).130.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2000, “Analytical
Solution for Penetration by Rigid Conical Impactors Using Cavity Expansion
Models
,” Mech. Res. Commun.
0093-6413,
27
(2
), pp.
185
–189
.131.
Yarin
, A.
L.
, Rubin
, M.
B.
, and Roisman
, I.
V.
, 1995,
“Penetration of a Rigid Projectile Into an Elastic-Plastic
Target of Finite Thickness
,” Int. J. Impact
Eng.
0734-743X, 16
(5/6
), pp.
801
–831
.132.
Roisman
, I.
V.
, Yarin
, A.
L.
, and Rubin
, M.
B.
, 1997,
“Oblique Penetration of a Rigid Projectile Into an
Elastic-Plastic Target
,” Int. J. Impact
Eng.
0734-743X, 19
(9-10
), pp.
769
–795
.133.
Yossifon
,
G.
,
Rubin
, M.
B.
, and Yarin
, A.
L.
, 2001,
“Penetration of a Rigid Projectile Into a Finite Thickness
Elastic-Plastic Target—Comparison Between Theory and Numerical
Computations
,” Int. J. Impact Eng.
0734-743X, 25
(3
), pp.
265
–290
.134.
Yossifon
,
G.
,
Yarin
, A.
L.
, and Rubin
, M.
B.
, 2002,
“Penetration of a Rigid Projectile Into a Multi-Layered
Target: Theory and Numerical Computations
,” Int. J.
Eng. Sci.
0020-7225,
40
(12
), pp.
1381
–1401
.135.
Srivathsa
,
B.
, and
Ramakrishnan
,
N.
,
1997, “On the Ballistic
Performance of Metallic Materials
,” Bull. Mater.
Sci.
0250-4707, 20
(1
), pp.
111
–123
.136.
Srivathsa
,
B.
, and
Ramakrishnan
,
N.
,
1998, “A Ballistic
Performance Index for Thick Metallic Armour
,”
Comput. Model. Simul. Eng.
1083-3455, 3
(1
), pp.
33
–39
.137.
Srivathsa
,
B.
, and
Ramakrishnan
,
N.
,
1999, “Ballistic
Performance Maps for Thick Metallic Armour
,” J.
Mater. Process. Technol.
0924-0136, 96
(1–3
), pp.
81
–91
.138.
Forrestal
, M.
J.
, and Hanchak
, S.
J.
, 1999,
“Perforation Experiments on HY-1000 Steel Plates With 4340 Rc
38 and Maraging T-250 Steel Rod Projectiles
,” Int.
J. Impact Eng.
0734-743X, 22
(9-10
), pp.
923
–933
.139.
Jones
,
N.
,
1997, Structural
Impact
, Cambridge Univ. Press
,
Cambridge.140.
Symonds
, P.
S.
, 1968,
“Plastic Shear Deformations in Dynamic Load
Problems
,” Engineering Plasticity
,
J.
Heyman
and F.
A
Leckie
, eds.,
Cambridge University Press
,
Cambridge.141.
Dinovitzer
, A.
S.
, Szymczak
,
M.
, and
Erickson
,
D.
,
1998, “Fragmentation of
Targets During Ballistic Penetration Events
,” Int.
J. Impact Eng.
0734-743X, 21
(4
), pp.
237
–244
.142.
Gupta
, N.
K.
, and Madhu
,
V.
,
1997, “An Experimental
Study of Normal and Oblique Impact of Hard-Core Projectile on Single and
Layered Plates
,” Int. J. Impact Eng.
0734-743X, 19
(5-6
), pp.
395
–414
.143.
Madhu
,
V.
,
Bhat
, T.
B.
, Gupta
, N.
K.
, 2003,
“Normal and Oblique Impacts of Hard Projectiles on Single and
Layered Plates—An Experimental Study
,” Def. Sci.
J.
0011-748X, 53
(2
), pp.
147
–156
.144.
Liaghat
, G.
H.
, and Malekzadeh
,
A.
,
1999, “A Modification to
the Mathematical Model of Perforation by Dikshit and
Sundararajan
,” Int. J. Impact Eng.
0734-743X, 22
(5
), pp.
543
–550
.145.
Dikshit
, S.
N.
, and Sundararajan
,
G.
,
1992, “The Penetration
of Thick Steel Plates by Ogive Shaped Projectiles—Experiment and
Analysis
,” Int. J. Impact Eng.
0734-743X, 12
(3
), pp.
373
–408
.146.
Chen
, X.
W.
, and Li
, Q.
M.
, 2003,
“Perforation of a Thick Plate by Rigid
Projectiles
,” Int. J. Impact Eng.
0734-743X, 28
(7
), pp.
743
–759
.147.
Chen
, X.
W.
, and Li
, Q.
M.
, 2003,
“Shear Plugging and Perforation of Ductile Circular Plates
Struck by a Blunt Projectile
,” Int. J. Impact
Eng.
0734-743X, 28
(5
), pp.
513
–536
.148.
Wu
,
Y.
, and
Batra
, R.
C.
, 1996,
“An Engineering Penetration/Perforation Model of
Hemispherical Nosed Rigid Cylindrical Rods Into Strain-Hardening
Targets
,” Comput. Struct.
0045-7949,
58
(1
), pp.
51
–58
.149.
Holt
, W.
H.
, Mock
,
W.
Jr.,
Soper
, W.
G.
, Coffey
, C.
S.
, Ramachandran
,
V.
, and
Armstrong
, R.
W.
, 1993,
“Reverse-Ballistic Impact Study of Shear Plug Formation and
Displacement in Ti6Al4V Alloy
,” J. Appl.
Phys.
0021-8979,
73
(8
), pp.
3753
–3759
.150.
Chen
,
L.
, and
Davies
, M. C.
R.
, 1997,
“Analysis of Energy Absorption of Adiabatic Shear Plugging in
Thermoviscoplastic Targets
,” Int. J. Eng.
Sci.
0020-7225,
35
(4
), pp.
365
–373
.151.
Grigoryan
, S.
S.
, 1993,
“Approximate Solution of the Problem for Penetration Into
Soil
,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza
0568-5281, 4
, 18
–24
(in Russian).152.
Foster
, J.
C.
, Jr.,,
Jones
, S.
E.
, Toness
,
O.
,
DeAngelis
, R.
J.
, and Rule
, W.
K.
, 2000,
“An Analytical Estimate for Mass Loss from a High Velocity
Rigid Penetrator
,” Am. Inst. Phys. Conf.
Proc.
, 505
(1
), pp.
1125
–1128
.153.
Børvik
,
T.
,
Hopperstad
, O.
S.
, Langseth
,
M.
, and
Malo
, K.
A.
, 2003,
“Effect of Target Thickness in Blunt Projectile Penetration
of Weldox 460 E Steel Plates
,” Int. J. Impact
Eng.
0734-743X, 28
(4
), pp.
413
–464
.154.
Wen
, H.
M.
, and Jones
,
N.
,
1996, “Low-Velocity
Perforation of Punch-Impact-Loaded Metal Plates
,” J.
Pressure Vessel Technol.
0094-9930, 118
(2
), pp.
181
–187
.155.
Bai
, Y.
L.
, and Johnson
,
W.
,
1982, “Plugging:
Physical Understanding and Energy Absorption
,” Met.
Technol. (London)
0307-1693, 9
, pp.
182
–190
.156.
Ravid
,
M.
, and
Bodner
, S.
R.
, 1983,
“Dynamic Perforation of Viscoplastic Plates by Rigid
Projectiles
,” Int. J. Impact Eng.
0734-743X, 21
(6
), pp.
577
–591
.157.
Wierzbicki
,
T.
,
1999, “Petalling of
Plates Under Explosive and Impact Loading
,” Int. J.
Impact Eng.
0734-743X, 22
(9–10
), pp.
935
–954
.158.
Gupta
, N.
K.
, Ansari
,
R.
, and
Gupta
, S.
K.
, 2001,
“Normal impact of Ogive Nosed Projectiles on Thin
Plates
,” Int. J. Impact Eng.
0734-743X, 25
(10
), pp.
641
–660
.159.
Atkins
, A.
G.
, Khan
, M.
A.
, and Liu
, J.
H.
, 1998,
“Necking and Radial Cracking Around Perforation in Thin
Sheets at Normal Incidence
,” Int. J. Impact
Eng.
0734-743X, 21
(7
), pp.
521
–539
.160.
Yankelevsky
, D.
Z.
, 1997,
“Local Response of Concrete Slabs to Low Velocity Missile
Impact
,” Int. J. Impact Eng.
0734-743X,
19
(4
), pp.
331
–343
.161.
Dancygier
, A.
N.
, 2000,
“Scaling of Non-Proportional Non-Deforming Projectiles
Impacting Reinforced Concrete Barriers
,” Int. J.
Impact Eng.
0734-743X, 24
(1
), pp.
33
–55
.162.
Li
, Q.
M.
, and Chen
, X.
W.
, 2003,
“Dimensionless Formulae for Penetration Depth of Concrete
Target Impacted by a Non-Deformable Projectile
,”
Int. J. Impact Eng.
0734-743X,
28
(1
), pp.
93
–116
.163.
Barr
,
P.
,
(1990), Guidelines for the
Design and Assessment of Concrete Structures Subjected to Impact
,
UK Atomic Energy Authority
, Safety and
Releability Directorate, UK.164.
Dancygier
, A.
N.
, 1997,
“Effect of Reinforcement Ratio on the Resistance of
Reinforced Concrete to Hard Projectile Impact
,”
Nucl. Eng. Des.
0029-5493, 172
(1-2
), pp.
233
–245
.165.
Forrestal
, M.
J.
, Altman
, B.
S.
, Cargile
, J.
D.
, and Hanchak
, S.
J.
, 1994,
“An Empirical Equation for Penetration Depth of Ogive-Nose
Projectiles Into Concrete Targets
,” Int. J. Impact
Eng.
0734-743X, 15
(4
), pp.
395
–405
.166.
Forrestal
, M.
J.
, Frew
, D.
J.
, Hanchak
, S.
J.
, and Brar
, N.
S.
, 1996,
“Penetration of Grout and Concrete Targets With Ogive-Nose
Steel Projectiles
,” Int. J. Impact Eng.
0734-743X,
18
(5
), pp.
465
–476
.167.
Frew
, D.
J.
, Hanchak
, S.
J.
, Green
, M.
L.
, and Forrestal
,
M. J.
, 1998,
“Penetration of Concrete Targets With Ogive-Nose Steel
Rods
,” Int. J. Impact Eng.
0734-743X,
21
(6
), pp.
489
–497
.168.
Forrestal
, M.
J.
, Frew
, D.
J.
, Hickerson
, J.
P.
, and Rohwer
, T.
A.
, 2003,
“Penetration of Concrete Targets With Deceleration-Time
Measurements
,” Int. J. Impact Eng.
0734-743X, 28
(5
), pp.
479
–497
.169.
Lixin
,
Q.
,
Yunbin
,
Y.
, and
Tong
,
L.
,
2000, “A Semi-Analytical
Model for Truncated-Ogive-Nose Projectiles Penetration Into Semi-Infinite
Concrete Targets
,” Int. J. Impact Eng.
0734-743X, 24
(9
), pp.
947
–955
.170.
Gomez
, J.
T.
, and Shukla
,
A.
,
2001, “Multiple Impact
Penetration of Semi-Infinite Concrete
,” Int. J.
Impact Eng.
0734-743X, 25
(10
), pp.
965
–979
.171.
Li
, Q.
M.
, and Tong
, D.
J.
, 2003,
“Perforation Thickness and Ballistic Limit of Concrete Target
Subjected to Rigid Projectile Impact
,” J. Eng. Mech.
Div.
0044-7951, 129
9
Sept.,
1083
–1091
. 10.1061/(ASCE)0733-9399(2003)129:9(1083)172.
Teland
, J.
A.
, and Sjøl
,
H.
,
2004, “Penetration Into
Concrete by Truncated Projectiles
,” Int. J. Impact
Eng.
0734-743X, 30
(4
), pp.
447
–464
.173.
Xu
,
Y.
,
Keer
, L.
M.
, and Luk
, V.
K.
, 1997,
“Elastic-Cracked Model for Penetration Into Unreinforced
Concrete Targets With Ogival Nose Projectiles
,” Int.
J. Solids Struct.
0020-7683, 34
(12
), pp.
1479
–1491
.174.
Choudhury
, M.
A.
, Siddiqui
, N.
A.
, and Abbas
,
H.
,
2002, “Reliability
Analysis of a Buried Concrete Target Under Missile Impact
,”
Int. J. Impact Eng.
0734-743X, 27
(8
), pp.
791
–806
.175.
Siddiqui
, N.
A.
, Choudhury
, M.
A.
, and Abbas
,
H.
,
2002, “Reliability
Analysis of Projectile Penetration Into Geological Targets
,”
Reliab. Eng. Syst. Saf.
0951-8320,
78
(1
), pp.
13
–19
.176.
Li
, Q.
M.
, and Chen
, X.
W.
, 2002,
“Penetration Into Concrete Targets by a Hard
Projectile
,” 7th Int. Conf. on Structures Under
Shock and Impact
, N.
Jones
, C.
A.
Brebbia
, and
A. M.
Rajendran
eds., May
27–29, Montreal, 2002, WIT Press
, Southampton,
pp. 91
–100
.177.
Me-Bar
,
Y.
,
1997, “A Method for
Scaling Ballistic Penetration Phenomena
,” Int. J.
Impact Eng.
0734-743X, 19
(9-10
), pp.
821
–829
.178.
Frew
, D.
J.
, Forrestal
, M.
J.
, and Hanchak
, S.
J.
, 2000,
“Penetration Experiments With Limestone Targets and
Ogive-Nose Steel Projectiles
,” ASME J. Appl.
Mech.
0021-8936,
67
(4
), pp.
841
–845
.179.
Forrestal
, M.
J.
, and Hanchak
, S.
J.
, 2002,
“Penetration Limit Velocity for Ogive-Nose Projectiles and
Limestone Targets
,” ASME J. Appl. Mech.
0021-8936,
69
(6
), pp.
853
–854
.180.
Murphy
, M.
J.
, 1984,
“Performance Analysis of Two-Stage
Munitions
,” Proc. 8th Int. Symp. on Ballistics
,
Orlando, Florida, TB 23
–29
.181.
Folsom
, E.
N.
Jr.,
1987, “Projectile
Penetration Into Concrete With an Inline Hole
,” Master’s
Thesis. LLNL, Univ. of California, Livermore, California.182.
Teland
, J.
A.
, 2001,
“A First Approach to Penetration of Tandem Charges Into
Concrete
,” FFI/RAPPORT-2001/00624, Norwegian Defence Res.
Establishment.183.
Teland
, J.
A.
, 2001,
“Cavity Expansion Theory Applied to Penetration of Targets
With Pre-Drilled Cavities
,” Proc. 19th Int. Symp. on
Ballistics
, 3, I. R.
Crewther
(ed),
Interlaken
, Switzerland, TB 36,
1329
–1335
.184.
Szendrei
,
T.
,
2000, “Resistance of
Geomaterials to Rigid Projectile Following Damage by Shaped Charge Jet
Penetration
,” Dynamic Physics Consultants CC, Johannesburg,
South Africa, Feb.185.
Yankelevsky
, D.
Z.
, 1983,
“Projectile Penetration Through a Narrow Drill in
Soil
,” Int. J. Impact Eng.
0734-743X, 1
(4
), pp.
377
–391
.186.
Young
, C.
W.
, 1997,
“Penetration Equations
,” Report SAND97-2426,
Sandia.187.
Kucher
,
V.
,
1967, “Penetration With
Optimal Work
,” Report BRL-R-1384, Ballistic Res. Lab.,
Aberdeen Proving Ground, MD.188.
Thomson
, W.
T.
, 1955,
“An Approximate Theory of Armor Penetration
,”
J. Appl. Phys.
0021-8979,
26
, pp.
80
–82
.189.
Nixdorff
,
K.
,
1987, “On the Efficiency
of Different Head Shapes to Perforate Thin Targets
,”
Trans. CSME
, 11
(2
), pp.
109
–112
.190.
Miele
,
A.
,
1962, “A Study of The
Slender Body of Revolution of Minimum Drag Using the Newton-Busemann
Pressure Coefficient Law
,” Tech. Report No 62,
Boeing Sci. Res. Lab., Flight Sci. Lab.
191.
Miele
,
A.
, ed.,
1965, Theory of Optimum
Aerodynamic Shapes
, Academic
Press
, New York.192.
Gendugov
, V.
M.
, Romanova
, C.
V.
, and Romodanova
,
T. V.
, 1984,
“Body of Revolution With Minimum Resistance Moving in
Elastic-Plastic and Plastically Compressible Media
,”
Problems of Dynamics of Deformable Media
,
Armenian Academy of Science
, Yerevan,
116
–119
(in Russian).193.
Bunimovich
, A.
I.
, and Yakunina
,
G. E.
, 1987,
“On the Shape of Minimum-Resistance Solids of Revolution
Moving in Plastically Compressible and Elastic-Plastic
Media
,” J. Appl. Math. Mech.
0021-8928,
51
(3
), pp.
386
–392
.194.
Bunimovich
, A.
I.
, and Yakunina
,
G. E.
, 1987,
“The Shapes of Three-Dimensional Minimum-Resistance Bodies
Moving in Compressible Plastic and Elastic Media
,”
Moscow Univ. Mech. Bull. (Engl. Transl.)
0027-1314, 42
(3
), pp.
59
–62
.195.
Bunimovich
, A.
I.
, and Yakunina
,
G. E.
, 1989,
“On the Shape of a Minimum Resistance Solid of Rotation
Penetrating Into Plastically Compressible Media Without
Detachment
,” J. Appl. Math. Mech.
0021-8928,
53
(5
), pp.
680
–683
.196.
Ostapenko
, N.
A.
, and Yakunina
,
G. E.
, 1992,
“Least-Drag Bodies Moving in Media Subject to Locality
Hypothesis
,” Fluid Dyn.
0015-4628,
27
(1
), pp.
71
–80
.197.
Ostapenko
, N.
A.
, 1997,
Optimum Shapes of Bodies Moving in Dense Media
,
Vladar
, Moscow (in
Russian).198.
Yankelevsky
, D.
Z.
, 1983,
“Optimal Shape of an Earth Penetrating
Projectile
,” Int. J. Solids Struct.
0020-7683, 19
(1
), pp.
25
–31
.199.
Yankelevsky
, D.
Z.
, and Gluck
,
J.
,
1980, “Nose Shape Effect
on High Velocity Soil Penetration
,” Int. J. Mech.
Sci.
0020-7403,
22
(5
), pp.
297
–311
.200.
Bondarchuk
, V.
S.
, Vedernikov
, Y.
A.
, Dulov
, V.
G.
, and Minin
, V.
F.
, 1982,
“On the Optimization of Star-Shaped
Impactors
,” Izvestija Sibirskogo Otdelenija Akademii
Nauk SSSR, Serija Tekhnicheskikh Nauk
,
13
(3
), pp.
60
–65
(in Russian).201.
Vedernikov
, Y.
A.
, and Shchepanovsly
,
V. A.
, 1995,
Optimization of Reagasdynamic Systems
,
Nauka
, Novosibirsk (in
Russian).202.
Vedernikov
, Y.
A.
, Khudiakov
, Y.
S.
, and Omelaev
, A.
I.
, 1995,
Ballistics: From Arrows to Rockets
,
Nauka
, Novosibirsk (in
Russian).203.
Ostapenko
, N.
A.
, Romanchenko
, V.
I.
, and Yakunina
,
G. E.
, 1994,
“Optimum Forms of Three-Dimensional Bodies for Penetration of
Dense Media
,” J. Appl. Mech. Tech. Phys.
0021-8944, 4
, pp.
515
–521
.204.
Ostapenko
, N.
A.
, and Yakunina
,
G. E.
, 1999,
“The Shape of Slender Three-Dimensional Bodies With Maximum
Depth of Penetration Into Dense Media
,” J. Appl.
Math. Mech.
0021-8928,
63
(6
), pp.
953
–967
.205.
Jones
, S.
J.
, Rule
, W.
K.
, Jerome
, D.
M.
, and Klug
, R.
T.
, 1998,
“On the Optimal Nose Geometry for a Rigid
Penetrator
,” Comput. Mech.
0178-7675,
22
(5
), pp.
413
–417
.206.
Jones
, S.
J.
, and Rule
, W.
K.
, 2000,
“On the Optimal Nose Geometry for a Rigid Penetrator,
Including the Effects of Pressure-Dependent Friction
,”
Int. J. Impact Eng.
0734-743X,
24
(4
), pp.
403
–415
.207.
Rule
, W.
K.
, and Jones
, S.
E.
, 1999,
“Some Remarks on the Optimal Nose Geometry of a Rigid
Penetrator in the Presence of Friction
,” Structures
under Extreme Loading Conditions, Fluid-Structure Interaction, and
Structural Mechanics Problems in Reactor Safety 1999, ASME Pressure Vess.
Piping Conf., ASME Pressure Vess. Piping Div. Publ. PVP
,
394
, pp.
11
–17
.208.
Eggers
, A.
J.
Jr.,
Resnikoff
, M.
M.
, and Dennis
, D.
H.
, 1957,
“Bodies of Revolutions Having Minimum Drag at High Supersonic
Air Speeds
,” Rep. No 1306, NACA.209.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2003, “Numerical
Solution for Shape Optimization of an Impactor Penetrating Into a
Semi-Infinite Target
,” Comput. Struct.
0045-7949,
81
(1
), pp.
9
–14
.210.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2003, “Shape
Optimization of an Impactor Penetrating Into a Concrete or a Limestone
Target
,” Int. J. Solids Struct.
0020-7683, 40
(17
), pp.
4487
–4500
.211.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2000, “Optimization of
the Shape of a Penetrator Taking Into Account Plug
Formation
,” Int. J. Fract.
0376-9429, 106
(3
), pp.
L29
–L34
.212.
Yakunina
, G.
E.
, 2000,
“The Construction of Three-Dimensional Shapes Within the
Framework of a Model of Local Interaction
,” J. Appl.
Math. Mech.
0021-8928,
64
(2
), pp.
289
–298
.213.
Yakunina
, G.
E.
, 2000,
“The Optimum Non-Conical and Asymmetrical Three-Dimensional
Configurations
,” J. Appl. Math. Mech.
0021-8928,
64
(4
), pp.
583
–591
.214.
Yakunina
, G.
E.
, 2001,
“On Body Shapes Providing Maximum Penetration Depth in Dense
Media
,” Dokl. Phys.
1028-3358,
46
(2
), pp.
140
–143
.215.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1999, “Some Ballistic
Properties of Non-Homogeneous Shields
,” Composites,
Part A
1359-835X,
30
(6
), pp.
733
–736
.216.
Aptukov
, V.
N.
, and Pozdeev
, A.
A.
, 1982,
“Some Minimax Problems of the Technology and Strengths of
Constructions
,” Eng. Cybernetics
,
20
(1
), pp.
39
–46
.217.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1998, “New Area Rule for
Penetrating Impactors
,” Int. J. Impact Eng.
0734-743X, 21
(1–2
), pp.
51
–59
.218.
Marom
,
I.
, and
Bodner
, S.
R.
, 1978,
“Projectile Perforation of Multi-Layered
Beams
,” Int. J. Mech. Sci.
0020-7403, 21
(8
), pp.
489
–504
.219.
Radin
,
J.
, and
Goldsmith
,
W.
,
1988, “Normal Projectile
Penetration and Perforation of Layered Targets
,”
Int. J. Impact Eng.
0734-743X, 7
(2
), pp.
229
–259
.220.
Woodward
, R.
L.
, and Cimpoeru
,
S. J.
, 1998,
“A Study of the Perforation of Aluminium Laminate
Targets
,” Int. J. Impact Eng.
0734-743X, 21
(3
), pp.
117
–131
.221.
Aptukov
, V.
N.
, Petrukhin
, G.
I.
, and Pozdeev
, A.
A.
, 1985,
“Optimal Deceleration of a Rigid Body by an Inhomogeneous
Plate for the Case of Normal Impact
,” Mech.
Solids
0025-6544, 20
(1
), pp.
155
–160
.222.
Aptukov
, V.
N.
, 1985,
“Optimal Structure of Inhomogeneous Plate With Continuous
Distribution of Properties Over the Thickness
,”
Mech. Solids
0025-6544, 20
(3
), pp.
148
–51
.223.
Aptukov
, V.
N.
, Belousov
, V.
L.
, and Kanibolotskii
,
M. A.
, 1986,
“Optimization of the Structure of a Layered Slab With the
Penetration of a Rigid Striker
,” Mech. Compos.
Mater.
0191-5665,
22
(2
), pp.
179
–183
.224.
Sagomonyan
, A.
Y.
, 1975,
“Plate Piercing by a Slender Solid
Projectile
,” Vestnik Moskovskogo Universiteta, Sezia 1,
Matematika, Mekhanika, No. 5, pp. 104
–111
(in
Russian).225.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1999, “On the Order of
Plates Providing the Maximum Ballistic Limit Velocity of a Layered
Armor
,” Int. J. Impact Eng.
0734-743X, 22
(8
), pp.
741
–755
.226.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1999, “Effect of Air Gap
and Order of Plates on Ballistic Resistance of Two Layered
Armor
,” Theor. Appl. Fract. Mech.
0167-8442, 31
(3
), pp.
233
–241
.227.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1998, “Effect of Air
Gaps on Ballistic Resistance of Targets for Conical
Impactors
,” Theor. Appl. Fract. Mech.
0167-8442, 30
(3
), pp.
243
–249
.228.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1998, “Analysis of
Ballistic Properties of Layered Targets Using Cavity Expansion
Model
,” Int. J. Fract.
0376-9429, 90
(4
), pp.
L63
–L67
.229.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2000, “The Optimum
Arrangement of the Plates in a Multi-Layered Shield
,”
Int. J. Solids Struct.
0020-7683, 37
(4
), pp.
687
–696
.230.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1998, “Optimization of
Layered Shields With a Given Areal Density
,” Int. J.
Fract.
0376-9429, 91
(1
), pp.
L9
–L14
.231.
Florence
, A.
L.
, 1969,
“Interaction of Projectiles and Composite Armor, Part
2
,” AMMRC-CR-69-15, Stanford Res.
Inst.
, Menlo Park, California.232.
Hetherington
, J.
G.
, 1992,
“Optimization of Two Component Composite
Armours
,” Int. J. Impact Eng.
0734-743X, 12
(3
), pp.
409
–414
.233.
Wang
,
B.
, and
Lu
,
G.
,
1996, “On the
Optimisation of Two-Component Plates Against Ballistic
Impact
,” J. Mater. Process. Technol.
0924-0136,
57
(1–2
), pp.
141
–145
.234.
Ben-Dor
,
G.
,
Dubinsky
,
A.
,
Elperin
,
T.
, and
Frage
,
N.
,
2000, “Optimization of
Two Component Ceramic Armor for a Given Impact Velocity
,”
Theor. Appl. Fract. Mech.
0167-8442, 33
(3
), pp.
185
–190
.235.
Lee
,
M.
, and
Yoo
, Y.
H.
, 2001,
“Analysis of Ceramic/Metal Armour Systems
,”
Theor. Appl. Fract. Mech.
0167-8442, 25
(9
), pp.
819
–829
.236.
Hetherington
, J.
G.
, and Lemieux
, P.
F.
, 1994,
“Effect of Obliquity on the Ballistic Performance of Two
Component Composite Armors
,” Int. J. Impact
Eng.
0734-743X, 15
(2
), pp.
131
–137
.237.
Sadanandan
,
S.
, and
Hetherington
, J.
G.
, 1997,
“Characterization of Ceramic/Steel and Ceramic/Aluminum
Armours Subjected to Oblique Impact
,” Int. J. Impact
Eng.
0734-743X, 19
(9–10
), pp.
811
–819
.238.
Woodward
, R.
L.
, 1990,
“A Simple One-Dimensional Approach to Modeling Ceramic
Composite Armor Defeat
,” Int. J. Impact
Eng.
0734-743X, 9
(4
), pp.
455
–474
.239.
den Reijer
, P.
S.
, 1991,
“Impact on Ceramic Faced Armours
,” Ph.D.
Thesis, Delft University of Technology, Netherlands.240.
Zaera
,
R.
, and
Sanchez-Galvez
,
V.
,
1998, “Analytical
Modeling of Normal and Oblique Ballistic Impact on Ceramic/Metal Lightweight
Armors
,” Int. J. Impact Eng.
0734-743X, 21
(3
), pp.
133
–148
.241.
Chocron-Benloulo
, I.
S.
, and Sanchez-Galvez
,
V.
,
1998, “A New Analytical
Model to Simulate Impact Onto Ceramic/Composite Armors
,”
Int. J. Impact Eng.
0734-743X, 21
(6
), pp.
461
–471
.242.
Zaera
,
R.
,
Sanchez-Saez
,
S.
,
Perez-Castellanos
, J.
L.
, and Navarro
,
C.
,
2000, “Modelling of the
Adhesive Layer in Mixed Ceramic/Metal Armours Subjected to
Impact
,” Composites, Part A
1359-835X,
31
(8
), pp.
823
–833
.243.
Fellows
, N.
A.
, and Barton
, P.
C.
, 1999,
“Development of Impact Model for Ceramic-Faced Semi-Infinite
Armor
,” Int. J. Impact Eng.
0734-743X, 22
(8
), pp.
793
–811
.244.
Zhang
,
Z.
,
Shen
,
J.
,
Zhong
,
W.
, and
Sun
,
Z.
,
2002, “A Dynamic Model
of Ceramic/Fibre-Reinforced Plastic Hybrid Composites Under Projectile
Striking
,” Proc. Inst. Mech. Eng.
0020-3483, Part G, 216
, pp.
325
–331
.245.
Du
,
Z.
, and
Zhao
,
G.
,
2001, “An Analytical
Model for a Bullet Penetrating Normally on a Target of Ceramic/Aluminum
Alloy
,” Acta Armamentarii
,
22
(4
), pp.
477
–480
(in Chinese).246.
James
,
B.
,
2002, “Practical Issues
in Ceramic Armor Design
,” Proc. Ceramic Armor
Materials by Design Symp.
, J. W.
McCauley
et al., (eds), Am.
Ceramic Soc.
, Ceramic Trans.
134
, pp. 33
–44
.247.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
1999, “Optimization of
Light Weight Armor Using Experimental Data
,” Theor.
Appl. Fract. Mech.
0167-8442, 100
(4
), pp.
L29
–L33
.248.
Wen
, H.
M.
, 2000,
“Predicting the Penetration and Perforation of FRP Laminates
Struck Normally by Projectiles With Different Nose Shapes
,”
Compos. Struct.
0263-8223,
49
(3
), pp.
321
–329
.249.
Wen
, H.
M.
, 2001,
“Penetration and Perforation of Thick FRP
Laminates
,” Compos. Sci. Technol.
0266-3538,
61
(8
), pp.
1163
–1172
.250.
Reid
, S.
R.
, and Wen
, H.
M.
, 2000,
“Perforation of FRP Laminates and Sandwich Panels Subjected
to Missile Impact
,” Impact Behaviour of
Fibre-Reinforced Composite Materials and Structures
, S. R.
Reid
and
G.
Zhou
(eds),
Woodhead Publishing Limited
,
Cambridge.251.
Wen
, H.
M.
, 2002,
“Predicting the Penetration and Perforation of Targets Struck
by Projectiles at Normal Incidence
,” Mech. Struct.
Mach.
0890-5452,
30
(4
), pp.
543
–577
.252.
Ravid
,
M.
,
Bodner
, S.
R.
, and Holcman
, I.
A.
, 1994,
“Two-Dimentional Analysis of Penetration by an Eroding
Projectile
,” Int. J. Impact Eng.
0734-743X, 15
(5
), pp.
587
–603
.253.
Wen
, H.
M.
, 2002,
“Penetration and Perforation of Thick Metallic Targets Under
Impact By Missiles
,” Chinese J. High Press.
Phys.
1000-5773, 16
(2
), pp.
94
–104
.254.
Ulven
,
C.
,
Vaidya
, U.
K.
, and Hosur
, M.
V.
, 2003,
“Effect of Projectile Shape During Ballistic Perforation Of
VARTM Carbon/Epoxy Composite Panels
,” Compos.
Struct.
0263-8223,
61
(1–2
), pp.
143
–150
.255.
Reyes-Villanueva
,
G.
, and
Cantwell
, W.
J.
, 2004,
“The High Velocity Impact Response of Composite and
FML-Reinforced Sandwich Structures
,” Compos. Sci.
Technol.
0266-3538, 64
(1
), pp.
35
–54
.256.
Wang
,
B.
, and
Chou
, S.
M.
, 1997,
“The Behaviour of Laminated Composite Plates as
Armour
,” J. Mater. Process. Technol.
0924-0136,
68
(3
), pp.
279
–287
.257.
Gellert
, E.
P.
, Cimpoeru
, S.
J.
, and Woodward
,
R. L.
, 2000,
“A Study of the Effect of Target Thickness on the Ballistic
Perforation of Glass-Fibre-Reinforced Plastic Composites
,”
Int. J. Impact Eng.
0734-743X, 24
(5
), pp.
445
–456
.258.
Czarnecki
, G.
J.
, 1998,
“Estimation of the v50 Using Semi-Empirical (1-Point)
Procedures
,” Composites, Part B
1359-8368,
29
(3
), pp.
321
–329
.259.
Lee
, B.
L.
, Song
, J.
W.
, and Ward
, J.
E.
, 1994,
“Failure of Spectra® Polyethylene Fiber-Reinforced Composites
Under Ballistic Impact Loading
,” J. Compos.
Mater.
0021-9983, 28
(13
), pp.
1202
–1226
.260.
Song
, J.
W.
, and Egglestone
,
G. T.
, 1987,
“Investigation of the PVB/PF Ratios on the Cross Linking and
Ballistic Properties in Glass and Aramid Fiber Laminate
Systems
,” Proc. 19th SAMPE Int. Tech.
Conf.
, pp. 108
–119
.261.
Morye
, S.
S.
, Hine
, P.
J.
, Duckett
, R.
A.
, Carr
, D.
J.
, and Ward
, I.
M.
, 2000,
“Modelling of the Energy Absorption by Polymer Composites
Upon Ballistic Impact
,” Compos. Sci.
Technol.
0266-3538,
60
(14
), pp.
2631
–2642
.262.
Kasano
,
H.
,
2001, “Impact
Perforation of Orthotropic and Quasi-Isotropic CFRP Laminates by a Steel
Ball Projectile
,” J. Compos. Mater.
0021-9983, 10
(4
), pp.
309
–318
.263.
Prosser
, R.
A.
, 1988,
“Perforation of Nylon Ballistic Panels by Fragment-Simulating
Projectiles. Part 1: A Linear Approximation to the Relationship Between the
Square of the v50 or vc Striking Velocity and the Number of Layers of Cloth
in the Ballistic Panel
,” Text. Res. J.
0040-5175, February, pp.
61
–85
.264.
Parga-Landa
,
B.
, and
Hernandez-Olivares
,
F.
,
1995, “An Analytical
Model to Predict Impact Behavior of Soft Armours
,”
Int. J. Impact Eng.
0734-743X, 16
(3
), pp.
455
–466
.265.
Cunniff
, P.
M.
, 1996,
“A Semiempirical Model for the Ballistic Impact Performance
Of Textile-Based Personel Armor
,” Text. Res.
J.
0040-5175, 66
(1
), pp.
45
–69
.266.
Vinson
, J.
R.
, and Zukas
, J.
A.
, 1975,
“On the Ballistic Impact of Textile Body
Armor
,” ASME J. Appl. Mech.
0021-8936, 42
(2
), pp.
263
–268
.267.
Vinson
, J.
R.
, and Walker
, J.
M.
, 1997,
“Ballistic Impact of Thin-Walled Composite
Structures
,” AIAA J.
0001-1452, 35
(5
), pp.
875
–878
.268.
Focht
, J.
R.
, and Vinson
, J.
R.
, 2002,
“Predicting Ballistic Penetration and Ballistic Limit in
Composite Material Structures
,” AIAA J.
0001-1452, 40
(11
), pp.
2366
–2368
.269.
Chocron-Benloulo
, I.
S.
, Rodriguez
,
J.
, and
Sanchez-Galvez
,
V.
,
1997, “A Simple
Analytical Model to Simulate Textile Fabric Ballistic Impact
Behaviour
,” Text. Res. J.
0040-5175, 67
(7
), pp.
520
–528
.270.
Royance
,
D.
,
Wailde
,
A.
, and
Tocci
,
G.
,
1973, “Ballistic Impact
of Textile Structures
,” Text. Res. J.
0040-5175, 43
(1
), pp.
34
–41
.271.
Smith
, J.
C.
, McCrackin
, F.
L.
, and Schieffer
,
H. F.
, 1958,
“Stress-Strain Relationships in Yarns Subjected to Rapid
Impact Loading, Part V: Wave Propagation in Long Textile Yarns Impacted
Transversely
,” Text. Res. J.
0040-5175, 28
(4
), pp.
288
–302
.272.
Chocron-Benloulo
, I.
S.
, Rodriguez
,
J.
, and
Sanchez-Galvez
,
V.
,
1997, “A Simple
Analytical Model for Ballistic Impact in Composites
,”
J. Phys. IV
1155-4339, 7
(C3
), pp.
821
–826
.273.
Billon
, H.
H.
, and Robinson
,
D. J.
, 2001,
“Models for the Ballistic Impact of Fabric
Armour
,” Int. J. Impact Eng.
0734-743X, 25
(4
), pp.
411
–422
.274.
Gu
,
B.
,
2003, “Analytical
Modeling for the Ballistic Perforation of Planar Plain-Woven Fabric Target
by Projectile
,” Composites, Part B
1359-8368,
34
(4
), pp.
361
–371
.275.
Walker
, J.
D.
, 1999,
“Constitutive Model for Fabrics With Explicit Static Solution
and Ballistic Limit
,” Proc. 18th Int. Symp. on
Ballistics
, 2
, Technomic
Publ.
, Lancaster, PA, pp.
1231
–1238
.276.
Walker
, J.
D.
, 2001,
“Ballistic Limit of Fabrics With Resin
,”
Proc. 19Th Int. Symp. On Ballistics
, 3
,
I.
R.
Crewther
(ed),
Interlaken
, Switzerland, pp.
1409
–1414
.277.
Orphal
, D.
L.
, Walker
, J.
D.
, and Anderson
,
C. E.
,
Jr.,
2002, “Ballistic
Response of Fabrics: Model and Experiments
,” AIP
Conf. Proc.
, 620
, pp.
1279
–1282
.278.
Walker
, J.
D.
, 2002,
“New Directions and New Challenges in Analytical Modeling of
Penetration Mechanics
,” AIP Conf. Proc.
,
620
, pp.
1273
–1278
.279.
Hoo Fatt
, M.
S.
, and Park
, K.
S.
, 2000,
“Perforation of Honeycomb Sandwich Plates by
Projectiles
,” Composites, Part A
1359-835X,
31
(8
), pp.
889
–899
.280.
Miroshin
, R.
N.
, Khalidov
, U.
A.
, 2002,
Local Methods in Continuum Mechanics
, Saint
Petersburg Univ. Publ. House
, St. Petersburg (in
Russian).Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.