Presented herein is a literature review on the design and performance of antimotion structures/devices such as breakwaters, submerged plates, oscillating water column breakwaters, air-cushion, auxiliary attachments, and mechanical joints for mitigating the hydroelastic response of very large floating structures (VLFS) under wave action. Shapes of VLFS that could minimize the hydrodynamic response of the structure are also discussed. The analytical, numerical, and experimental methods used in studying the effect of these antimotion structures/devices toward reducing the hydroelastic responses of VLFS are also reviewed.

1.
Art Rosebblum
,
B.
, 2001, “
From the Best Minds in the World:100 Nobel Laureates Warn
,” Our Planet, Aug. 28, 2009, http://www.cam.net.uk/home/nimmann/peace/nobel.htmhttp://www.cam.net.uk/home/nimmann/peace/nobel.htm
2.
6.
Wang
,
C. M.
,
Watanabe
,
E.
, and
Utsunomiya
,
T.
, 2008,
Very Large Floating Structures
,
Taylor and Francis
,
Routledge, UK
.
7.
Suzuki
,
H.
, 2005, “
Overview of Megafloat: Concept, Design Criteria, Analysis, and Design
,”
Mar. Struct.
0951-8339,
18
(
2
), pp.
111
132
.
8.
Suzuki
,
H.
,
Bhattacharya
,
B.
,
Fujikubo
,
M.
,
Hudson
,
D. A.
,
Riggs
,
H. R.
,
Seto
,
H.
,
Shin
,
H.
,
Shugar
,
T. A.
,
Yasuzawa
,
Y.
, and
Zong
,
Z.
, 2006, “
ISSC Committee Vi.2: Very Large Floating Structures
,”
Sixteenth International Ship and Offshore Structures Congress
, Southampton, UK, pp.
394
442
.
9.
Endo
,
H.
, 2000, “
The Behavior of a VLFS and an Airplane During Takeoff/Landing Run in Wave Condition
,”
Mar. Struct.
0951-8339,
13
(
4–5
), pp.
477
491
.
10.
Tay
,
Z. Y.
,
Wang
,
C. M.
, and
Utsunomiya
,
T.
, 2009, “
Hydroelastic Responses and Interactions of Floating Fuel Storage Modules Placed Side-by-Side With Floating Breakwaters
,”
Mar. Struct.
0951-8339,
22
(
3
), pp.
633
658
.
11.
Pernice
,
R.
, 2009, “
Japanese Urban Artificial Islands: An Overview of Projects and Schemes for Marine Cities During 1960s-1990s
,”
Journal of Architecture Planning (Transactions of AIJ)
,
74
(
642
), pp.
1847
1855
.
12.
Cheung
,
B.
, 2008, “
NATO Lecture Series: Survival at Sea for Mariners, Aviators and Personnel Involved in Search and Rescue
,” NATO Research and Technology Organization.
13.
ITTC
, 1999, “
Testing and Extrapolation Methods High Speed Marine Vehicles, Recommended Procedures and Guidelines
,” Excerpt of ISO2631, Seasickness and Fatigue.
14.
15.
Goda
,
Y.
, 2000,
Random Seas and Design of Maritime Structures
,
World Scientific
,
Singapore
.
16.
Utsunomiya
,
T.
,
Watanabe
,
E.
, and
Nakamura
,
N.
, 2001, “
Analysis of Drift Force on VLFS by the Near-Field Approach
,”
Proceedings of the 11th International Offshore and Polar Engineering Conference
, Stavanger, Norway, pp.
217
221
.
17.
Ohmatsu
,
S.
, 2001, “
Numerical Calculation Method for the Hydroelastic Response of a Pontoon-Type Very Large Floating Structure Close to a Breakwater
,”
J. Mar. Sci. Technol.
0948-4280,
5
(
4
), pp.
147
160
.
18.
Headland
,
J. R.
, 1995,
Floating Breakwater
,
Chapman and Hall
,
USA
, Chap. 5.
19.
Carver
,
R. D.
, 1979, “
Floating Breakwater Wave-Attenuation Tests for East Bay Marina, Olympia Harbor, Washington; Hydraulic Model Investigation
,” U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS.
20.
Ren
,
X.
, and
Wang
,
K. H.
, 1994, “
Mooring Lines Connected to Floating Porous Breakwaters
,”
Int. J. Eng. Sci.
0020-7225,
32
(
10
), pp.
1511
1530
.
21.
Williams
,
A. N.
,
Lee
,
H. S.
, and
Huang
,
Z.
, 2000, “
Floating Pontoon Breakwaters
,”
Ocean Eng.
0029-8018,
27
(
3
), pp.
221
240
.
22.
Dong
,
G. H.
,
Zheng
,
Y. N.
,
Li
,
Y. C.
,
Teng
,
B.
,
Guan
,
C. T.
, and
Lin
,
D. F.
, 2008, “
Experiments on Wave Transmission Coefficients of Floating Breakwaters
,”
Ocean Eng.
0029-8018,
35
(
8–9
), pp.
931
938
.
23.
Hong
,
S. Y.
,
Choi
,
Y. R.
, and
Hong
,
S. W.
, 2002, “
Analysis of Hydro-Elastic Response of Pontoon-Type VLFS Coupled With Floating Breakwaters Using a Higher-Order Boundary Element Method
,”
Proceedings of the 12th International Offshore and Polar Engineering Conference
, Kitakyushu, Japan, pp.
313
318
.
24.
Lee
,
S. -M.
,
Takaki
,
M.
, and
Iwano
,
M.
, 2003, “
Estimation of the Radiation Forces on Submerged-Plate Oscillating Near a Free Surface by Composite Grid Method
,”
Transactions of the West-Japan Society of Naval Architects
,
105
, pp.
113
122
.
25.
Lee
,
C. -H.
, and
Newman
,
J. N.
, 2000, “
Wave Effects on Large Floating Structures With Air Cushions
,”
Mar. Structures
,
13
(
4–5
), pp.
315
330
.
26.
Ohta
,
H.
,
Torii
,
T.
,
Hayashi
,
N.
,
Watanabe
,
E.
,
Utsunomiya
,
T.
,
Sekita
,
K.
, and
Sunahara
,
S.
, 1999, “
Effect of Attachment of a Horizontal/Vertical Plate on the Wave Response of a VLFS
,”
Proceedings of the Third International Workshop on Very Large Floating Structure
,
University of Hawaii at Manao
,
Honolulu, HI
, Vol.
1
, pp.
256
274
.
27.
Watanabe
,
E.
,
Utsunomiya
,
T.
,
Kuramoto
,
M.
,
Ohta
,
H.
,
Torii
,
T.
, and
Hayashi
,
N.
, 2003, “
Wave Response Analysis of VLFS With an Attached Submerged Plate
,”
Int. J. Offshore Polar Eng.
1053-5381,
13
(
3
), pp.
190
197
.
28.
Watanabe
,
E.
,
Utsunomiya
,
T.
,
Ohta
,
H.
, and
Hayashi
,
N.
, 2003, “
Wave Response Analysis of VLFS With an Attached Submerged Plate: Verification With 2-D Model and Some 3-D Numerical Examples
,”
Proceedings of International Symposium on Ocean Space Utilization Technology, National Maritime Research Institute
, Tokyo, Japan, pp.
157
164
.
29.
Takagi
,
K.
,
Shimada
,
K.
, and
Ikebuchi
,
T.
, 2000, “
An Anti-Motion Device for a Very Large Floating Structure
,”
Mar. Struct.
0951-8339,
13
(
4–5
), pp.
421
436
.
30.
Takaki
,
M.
, and
Nishikawa
,
M.
, 2001, “
Hydrodynamic Characteristic of a Submerged Horizontal Plate
,”
Transactions of the West-Japan Society of Naval Architects
,
101
, pp.
81
88
.
31.
Pham
,
D. C.
,
Wang
,
C. M.
, and
Utsunomiya
,
T.
, 2008, “
Hydroelastic Analysis of Pontoon-Type Circular VLFS With an Attached Submerged Plate
,”
Appl. Ocean. Res.
0141-1187,
30
, pp.
287
296
.
32.
Masanobu
,
S.
,
Kato
,
S.
,
Maeda
,
K.
, and
Namba
,
Y.
, 2003, “
Response of the Mega-Float Equipped With Novel Wave Energy Absorber
,” ASME Paper No. OMAE2003-37170.
33.
Maeda
,
H.
,
Washio
,
Y.
,
Osawa
,
H.
,
Sato
,
C.
,
Ikoma
,
T.
,
Onishi
,
Y.
, and
Arita
,
M.
, 2000, “
Characteristics of Hydroelastic Responses for Elastic Floating Structure With Wave Energy Absorption System in Waves
,”
JASNAOE Ocean Engineering Symposium
, Kobe, Japan, 15, pp.
173
178
.
34.
Ikoma
,
T.
,
Maeda
,
H.
,
Masuda
,
K.
,
Rheem
,
C. -K.
, and
Arita
,
M.
, 2002, “
Effects of Submerged Vertical Plates and Air Chamber Units in Hydroelastic Response Reductions
,”
Proceedings of the 12th International Offshore and Polar Engineering Conference
, Kitakyushu, Japan, pp.
547
552
.
35.
Hong
,
D. C.
,
Hong
,
S. Y.
, and
Hong
,
S. W.
, 2006, “
Reduction of Hydroelastic Responses of a Very-Long Floating Structure by a Floating Oscillating-Water-Column Breakwater System
,”
Ocean Eng.
0029-8018,
33
(
5–6
), pp.
610
634
.
36.
Hong
,
D. C.
, and
Hong
,
S. Y.
, 2007, “
Hydroelastic Responses and Drift Forces of a Very-Long Floating Structure Equipped With a Pin-Connected Oscillating-Water-Column Breakwater System
,”
Ocean Eng.
0029-8018,
34
(
5–6
), pp.
696
708
.
37.
Maeda
,
H.
,
Onishi
,
Y.
,
Rheem
,
C. -K.
,
Ikoma
,
T.
,
Washio
,
Y.
,
Osawa
,
H.
, and
Arita
,
M.
, 2000, “
Flexible Response Reduction on a Very Large Floating Structure due to OWC Wave Power Devices
,”
J. Soc. Nav. Archit. Jpn.
0514-8499,
188
, pp.
279
285
.
38.
Maeda
,
H.
,
Rheem
,
C. -K.
,
Washio
,
Y.
,
Osawa
,
H.
,
Nagata
,
Y.
,
Ikoma
,
T.
,
Fujita
,
N.
, and
Arita
,
M.
, 2001, “
Reduction Effects of Hydroelastic Responses on a Very Large Floating Structure With Wave Energy Absoption Devices Using OWC System
,” ASME Paper No. OMAE2001/OSU-5013.
39.
Ikoma
,
T.
,
Maeda
,
H.
,
Masuda
,
K.
, and
Rheem
,
C. -K.
, 2003, “
Effects of the Air-Chambers on the Hydroelastic Response Reduction
,”
Proceedings of International Symposium on Ocean Space Utilization Technology
, Tokyo, Japan, pp.
180
188
.
40.
Hong
,
S. Y.
, and
Kyoung
,
J. H.
, 2006, “
Hydroelastic Response of VLFS Coupled With OWC-Type Breakwater
,”
Proceedings of the Fourth International Conference on Hydroelasticity in Marine Technology
, Wuxi, China, pp.
245
254
.
41.
Hong
,
S. Y.
, and
Kyoung
,
J. H.
, 2007, “
Effects of Location and Shape of OWC-Chamber on the Hydroelastic Response of VLFS
,”
Proceedings of the Seventh International Offshore and Polar Engineering Conference
, Lisbon, Portugal, pp.
434
438
.
42.
Kyoung
,
J. H.
, and
Hong
,
S. Y.
, 2008, “
Localized Finite Element Method on Hydroelastic Responses of OWC-Embedded VLFS
,” ASME Paper No. OMAE2008-57995.
43.
Hong
,
S. Y.
,
Kim
,
B. W.
, and
Kyoung
,
J. H.
, 2009, “
Numerical and Experimental Study on Coupled Hydroelastic Behavior of VLFS and OWC Chamber
,”
Proceedings of the Fifth International Conference on Hydroelasticity in Marine Technology
, Southampton, UK, pp.
303
312
.
44.
Shigemitsu
,
H.
,
Ogata
,
T.
,
Kobayashi
,
H.
,
Inoue
,
K. -I.
,
Fukuoka
,
T.
, and
Takaoki
,
T.
, 2001, “
Feasibility Study of Reducing Wave Load on Pontoon-Type Mega-Float Structure
,” ASME Paper No. OMAE2001/OSU-5011.
45.
Thiagarajan
,
K. P.
, and
Morris-Thomas
,
M. T.
, 2006, “
Wave-Induced Motions of an Air Cushion in Shallow Water
,”
Ocean Eng.
0029-8018,
33
(
8–9
), pp.
1143
1160
.
46.
Qi
,
X. -Y.
, 1994, “
Experimental Study on Behaviour of an Open Bottom Floating Platform in Wave, Wind and Current
,”
Proceedings of the Fourth International Offshore and Polar Engineering Conference
, Osaka, Japan, pp.
334
337
.
47.
Pinkster
,
J. A.
, 1997, “
The Effect of Air-Cushions Under Floating Offshore Structures
,”
Proceedings of the Eighth International Conference on the Behavior of Offshore Structure
, Delf, The Netherlands, 2, pp.
143
158
.
48.
Lee
,
S. -M.
, and
Takaki
,
M.
, 2003, “
Interaction Effect of Hydrodynamic Forces on a VLFS With Submerged-Plate
,”
Transactions of the West-Japan Society of Naval Architects
,
106
, pp.
77
87
.
49.
Pinkster
,
J. A.
, and
Meevers Scholte
,
E. J. A.
, 2001, “
The Behavior of a Large Air-Supported Mob at Sea
,”
Mar. Struct.
0951-8339,
14
, pp.
163
179
.
50.
Van Kessel
,
J. L. F.
, and
Pinkster
,
J. A.
, 2007, “
The Effect of Aircushion Division on the Motions of Large Floating Structures
,” ASME Paper No. OMAE2007-29512.
51.
Van Kessel
,
J. L. F.
, and
Pinkster
,
J. A.
, 2007, “
Wave-Induced Structural Loads on Different Types of Aircushion Supported Structures
,”
Proceedings of the 17th International Offshore and Polar Engineering Conference
, Lisbon, Portugal, pp.
3794
3801
.
52.
Van Kessel
,
J. L. F.
, 2008, “
Numerical and Experimental Study on Aircushion Supported Structures
,” ASME Paper No. OMAE2008-57884.
53.
Ikoma
,
T.
,
Kobayashi
,
M.
,
Masuda
,
K.
,
Rheem
,
C. -K.
, and
Maeda
,
H.
, 2008, “
A Prediction Method of Hydroelastic Motion of Aircushion Type Floating Structures Considering With Draft Effect Into Hydrodynamic Forces
,” ASME Paper No. OMAE2008-57189.
54.
Ikoma
,
T.
,
Masuda
,
K.
,
Rheem
,
C. -K.
,
Maeda
,
H.
, and
Togane
,
M.
, 2009, “
Hydroelastic Motion of Aircushion Type Large Floating Structures With Several Aircushions Using a Three-Dimensional Theory
,” ASME Paper No. OMAE2009-79292.
55.
Takaki
,
M.
,
Fujikubo
,
M.
,
Higo
,
Y.
,
Hamada
,
K.
,
Kobayashi
,
M.
,
Nakagawa
,
H.
,
Morishita
,
S.
,
Ando
,
K.
, and
Tanigami
,
A.
, 2001, “
A New Type VLFS Using Submerged Plates: Sub-Plate VLFS. Part 1 Basic Concept of System
,” ASME Paper No. OMAE2001/OSU-5017.
56.
Kanda
,
M.
,
Nakagawa
,
H.
,
Kobayashi
,
M.
,
Takaki
,
M.
,
Iwashita
,
H.
,
Higo
,
Y.
, and
Imai
,
Y.
, 2001, “
A New Type VLFS Using Submerged Plates: Sub-Plate VLFS. Part 2 Motion and Mooring of Floating Breakwater
,”
Proceedings of the ASME 20th International Conference on Offshore Mechanics and Arctic Engineering
, Rio de Janeiro, Brazil.
57.
Fujikubo
,
M.
,
Yanagihara
,
D.
,
Kitamura
,
M.
,
Yamamoto
,
M.
,
Iwashita
,
H.
,
Takaki
,
M.
,
Kanda
,
M.
,
Ando
,
K.
, and
Imai
,
Y.
, 2001, “
A New Type VLFS Using Submerged Plates: Sub-Plate VLFS. Part 3 Structural Response and Strength
,” ASME Paper No. OMAE2001/OSU-5019.
58.
Khabakhpasheva
,
T. I.
, and
Korobkin
,
A. A.
, 2002, “
Hydroelastic Behavior of Compound Floating Plate in Waves
,”
J. Eng. Math.
0022-0833,
44
(
1
), pp.
21
40
.
59.
Kim
,
B. W.
,
Kyoung
,
J. H.
,
Hong
,
S. Y.
, and
Cho
,
S. K.
, 2005, “
Investigation of the Effect of Stiffness Distribution and Structure Shape on Hydroelastic Responses of Very Large Floating Structures
,”
Proceedings of the 15th International Offshore and Polar Engineering Conference
, Seoul, Korea, pp.
210
217
.
60.
Wang
,
C. M.
,
Riyansyah
,
M.
, and
Choo
,
Y. S.
, 2009, “
Reducing Hydroelastic Response of Interconnected Floating Beams Using Semi-Rigid Connections
,” ASME Paper No. OMAE2009-79692.
61.
Xia
,
D.
,
Kim
,
J. W.
, and
Cengiz Ertekin
,
R.
, 2000, “
On the Hydroelastic Behavior of Two-Dimensional Articulated Plates
,”
Mar. Structures
,
13
(
4–5
), pp.
261
278
.
62.
Fu
,
S.
,
Moan
,
T.
,
Chen
,
X.
, and
Cui
,
W.
, 2007, “
Hydroelastic Analysis of Flexible Floating Interconnected Structures
,”
Ocean Eng.
0029-8018,
34
(
11–12
), pp.
1516
1531
.
63.
Okada
,
S.
, 1998, “
Study on Edge Shape of Very Large Floating Structures to Reduce Motion
,”
J. Soc. Nav. Archit. Jpn.
0514-8499,
184
, pp.
263
269
.
64.
Damaren
,
C. J.
, 2007, “
Hydrodynamic Shape Optimization of Thin Floating Plates
,”
Ocean Eng.
0029-8018,
34
(
17–18
), pp.
2231
2239
.
65.
Takagi
,
K.
, and
Nagayasu
,
M.
, 2001, “
Hydroelastic Behavior of a Mat-Type Very Large Floating Structure of Arbitrary Geometry
,”
Proceedings of Oceans
, Honolulu, HI, Vol.
3
, pp.
1923
1929
.
66.
Kinnas Spyros
,
A.
,
Yu
,
Y. -H.
, and
Vimayan
,
V.
, 2006, “
Prediction of Flows Around FPSO Hull Sections in Roll Using an Unsteady Navier-Stokes Solver
,”
Proceedings of the 16th International Offshore and Polar Engineering Conference
, San Francisco, CA, pp.
384
393
.
67.
Hsueh
,
W. -J.
, 1998, “
Vibration Reduction of Main Hulls Using Semiactive Absorbers
,”
J. Mar. Sci. Technol.
0948-4280,
3
(
1
), pp.
50
60
.
You do not currently have access to this content.