Pneumatic artificial muscles (PAMs) are linear pneumatic actuators consisting of a flexible bladder with a set of in-extensible fibers woven as a sheath on the outside. Upon application of pressure, the actuators contract or expand based on the angle of winding of the braid. Due to the similarity in properties of the actuators with biological muscles and the advantages thereof, these are increasingly being used in many robotic systems and mechanisms. This necessitates the development of mathematical models describing their mechanics for optimal design as well as for application in control systems. This paper presents a survey on different mathematical models described in the literature for representing the statics of PAM. Since it is observed that the validity of existing static models, based on energy balance methods, is not consistent with changes in parameters when applied to their miniaturized versions of pneumatic artificial muscles (MPAM), a new model has been proposed. The model takes into account material properties of the bladder as well as the end-effects which are prominent for MPAMs. Experiments conducted on fabricated MPAMs, of different diameters and lengths, show that the proposed model predicts the pressure-deformation characteristics of MPAMs with maximum error of less than 7%.

References

1.
Gaylord
,
R. H.
,
1958
, “
Fluid Actuated Motor System and Stroking Device
,” U.S. Patent No. 2,844,126.
2.
Joseph
,
L.
,
1960
, “
Artificial Muscle
,”
Life
,
14
, pp.
87
88
.
3.
Pillsbury
,
T. E.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2015
, “
Effect of Bladder Wall Thickness on Miniature Pneumatic Artificial Muscle Performance
,”
Bioinspiration Biomimetics
,
10
(
5
), p.
055006
.
4.
Festo Didactic, 2018, “
Festo Fluidic Muscle
,”
Festo Didactic
,
Eatontown, NJ
, accessed Apr. 12, 2018, www.festo.com
5.
Takosoglu
,
J. E.
,
Laski
,
P. A.
,
Blasiak
,
S.
,
Bracha
,
G.
, and
Pietrala
,
D.
,
2016
, “
Determining the Static Characteristics of Pneumatic Muscles
,”
Meas. Control
,
49
(
2
), pp.
62
71
.
6.
De Greef
,
A.
,
Lambert
,
P.
, and
Delchambre
,
A.
,
2009
, “
Towards Flexible Medical Instruments: Review of Flexible Fluidic Actuators
,”
Precis. Eng.
,
33
(
4
), pp.
311
321
.
7.
Prior
,
S. D.
,
Warner
,
P. R.
,
White
,
A. S.
,
Parsons
,
J.
, and
Gill
,
R.
,
1993
, “
Actuators for Rehabilitation Robots
,”
Mechatronics
,
3
(
3
), pp.
285
294
.
8.
Takagi
,
T.
, and
Sakaguchi
,
Y.
,
1986
, “
Pneumatic Actuator for Manipulator
,” Bridgestone, Tokyo, Japan, U.S. Patent No.
4,615,260
.https://patents.google.com/patent/US4615260
9.
Moers
,
A.
,
De Volder
,
M.
, and
Reynaerts
,
D.
,
2012
, “
Integrated High Pressure Microhydraulic Actuation and Control for Surgical Instruments
,”
Biomed. Microdev.
,
14
(
4
), pp.
699
708
.
10.
Ashwin
,
K.
,
Jose
,
D. P.
, and
Ghosal
,
A.
,
2015
, “
Modeling and Analysis of a Flexible End-Effector for Actuating Endoscopic Catheters
,”
14th World Congress in Mechanism and Machine Science
, Taipei, Taiwan, Oct. 25–30, pp.
113
120
.http://www.mecheng.iisc.ernet.in/~asitava/IFToMM2015_ashwin.pdf
11.
Le
,
H. M.
,
Do
,
T. N.
, and
Phee
,
S. J.
,
2016
, “
A Survey on Actuators-Driven Surgical Robots
,”
Sens. Actuators A: Phys.
,
247
, pp.
323
354
.
12.
Noritsugu
,
T.
, and
Tanaka
,
T.
,
1997
, “
Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot
,”
IEEE/ASME Trans. Mechatronics
,
2
(
4
), pp.
259
267
.
13.
Jamwal
,
P. K.
,
Xie
,
S. Q.
,
Hussain
,
S.
, and
Parsons
,
J. G.
,
2014
, “
An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
64
75
.
14.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2011
, “
A Survey on Applications of Pneumatic Artificial Muscles
,”
19th IEEE Mediterranean Conference on Control & Automation
(
MED
), Corfu, Greece, June 20–23, pp.
1439
1446
.
15.
Li
,
H.
,
Kawashima
,
K.
,
Tadano
,
K.
,
Ganguly
,
S.
, and
Nakano
,
S.
,
2013
, “
Achieving Haptic Perception in Forceps Manipulator Using Pneumatic Artificial Muscle
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
74
85
.
16.
Doric
,
I.
,
Reitberger
,
A.
,
Wittmann
,
S.
,
Harrison
,
R.
, and
Brandmeier
,
T.
,
2014
, “
1 A Novel Approach for the Test of Active Pedestrian Safety Systems
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
5
), pp.
1299
1312
.
17.
Tjahyono
,
A. P.
,
Aw
,
K. C.
,
Devaraj
,
H.
,
Surendra
,
W.
,
Haemmerle
,
E.
, and
Travas-Sejdic
,
J.
,
2013
, “
A Five-Fingered Hand Exoskeleton Driven by Pneumatic Artificial Muscles With Novel Polypyrrole Sensors
,”
Ind. Rob: An Int. J.
,
40
(
3
), pp.
251
260
.
18.
Obiajulu
,
S. C.
,
Roche
,
E. T.
,
Pigula
,
F. A.
, and
Walsh
,
C. J.
,
2013
, “
Soft Pneumatic Artificial Muscles With Low Threshold Pressures for a Cardiac Compression Device
,”
ASME
Paper No. DETC2013-13004.
19.
De Volder
,
M.
,
Moers
,
A.
, and
Reynaerts
,
D.
,
2011
, “
Fabrication and Control of Miniature Mckibben Actuators
,”
Sens. Actuators A: Phys.
,
166
(
1
), pp.
111
116
.
20.
Chakravarthy
,
S.
,
Aditya
,
K.
, and
Ghosal
,
A.
,
2014
, “
Experimental Characterization and Control of Miniaturized Pneumatic Artificial Muscle
,”
ASME J. Med. Devices
,
8
(
4
), p.
041011
.
21.
Bryant
,
M.
,
Meller
,
M. A.
, and
Garcia
,
E.
,
2013
, “
Toward Variable Recruitment Fluidic Artificial Muscles
,”
ASME
Paper No. SMASIS2013-3136.
22.
Bryant
,
M.
,
Meller
,
M. A.
, and
Garcia
,
E.
,
2014
, “
Variable Recruitment Fluidic Artificial Muscles: Modeling and Experiments
,”
Smart Mater. Struct.
,
23
(
7
), p.
074009
.
23.
Meller
,
M. A.
,
Chipka
,
J. B.
,
Bryant
,
M. J.
, and
Garcia
,
E.
,
2015
, “
Modeling of the Energy Savings of Variable Recruitment McKibben Muscle Bundles
,”
Proc. SPIE
,
9429
, p.
94290S
.
24.
Robinson
,
R. M.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2015
, “
Variable Recruitment Testing of Pneumatic Artificial Muscles for Robotic Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1642
1652
.
25.
Meller
,
M.
,
Chipka
,
J.
,
Volkov
,
A.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2016
, “
Improving Actuation Efficiency Through Variable Recruitment Hydraulic Mckibben Muscles: Modeling, Orderly Recruitment Control, and Experiments
,”
Bioinspiration Biomimetics
,
11
(
6
), p.
065004
.
26.
Kurumaya
,
S.
,
Nabae
,
H.
,
Endo
,
G.
, and
Suzumori
,
K.
,
2017
, “
Design of Thin Mckibben Muscle and Multifilament Structure
,”
Sens. Actuators A: Phys.
,
261
, pp.
66
74
.
27.
Wang
,
B.
,
Aw
,
K. C.
,
Biglari-Abhari
,
M.
, and
McDaid
,
A.
,
2016
, “
Design and Fabrication of a Fiber-Reinforced Pneumatic Bending Actuator
,”
IEEE International Conference on Advanced Intelligent Mechatronics
(
AIM
), Banff, AB, Canada, July 12–15, pp.
83
88
.
28.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the Octarm Continuum Manipulator
,”
International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
2336
2341
.
29.
Bishop-Moser
,
J.
,
Krishnan
,
G.
, and
Kota
,
S.
,
2013
, “
Force and Moment Generation of Fiber-Reinforced Pneumatic Soft Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
4460
4465
.
30.
Robinson
,
R. M.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2015
, “
Quasi-Static Nonlinear Response of Pneumatic Artificial Muscles for Both Agonistic and Antagonistic Actuation Modes
,”
J. Intell. Mater. Syst. Struct.
,
26
(
7
), pp.
796
809
.
31.
Robinson
,
R. M.
,
Kothera
,
C. S.
,
Sanner
,
R. M.
, and
Wereley
,
N. M.
,
2016
, “
Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
55
68
.
32.
Tondu
,
B.
,
2012
, “
Modelling of the Mckibben Artificial Muscle: A Review
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
225
253
.
33.
Schulte
,
H.
,
1961
, “
The Application of External Power in Prosthetics and Orthotics, the Characteristics of the McKibben Artificial Muscle
,”
National Research Council
, Ottawa, ON, Canada, p.
874
.
34.
Das
,
G. K. H. S. L.
,
Tondu
,
B.
,
Forget
,
F.
,
Manhes
,
J.
,
Stasse
,
O.
, and
Souères
,
P.
,
2016
, “
Controlling a Multi-Joint Arm Actuated by Pneumatic Muscles With Quasi-Ddp Optimal Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, South Korea, Oct. 9–14, pp.
521
528
.
35.
Pillsbury
,
T. E.
,
Wereley
,
N. M.
, and
Guan
,
Q.
,
2017
, “
Comparison of Contractile and Extensile Pneumatic Artificial Muscles
,”
Smart Mater. Struct.
,
26
(
9
), p.
095034
.
36.
Chou
,
C. P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of Mckibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
37.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of Mckibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
.
38.
Itto
,
T.
, and
Kogiso
,
K.
,
2011
, “
Hybrid Modeling of Mckibben Pneumatic Artificial Muscle Systems
,”
IEEE International Conference on Industrial Technology
(
ICIT
), Auburn, AL, Mar. 14–16, pp.
65
70
.
39.
Davis
,
S.
, and
Caldwell
,
D. G.
,
2006
, “
Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators
,”
Int. J. Rob. Res.
,
25
(
4
), pp.
359
369
.
40.
Chapman
,
E.
,
Macleod
,
M.
, and
Bryant
,
M.
,
2015
, “
Electrohydraulic Modeling of a Fluidic Artificial Muscle Actuation System for Robot Locomotion
,”
ASME
Paper No. SMASIS2015-8834.
41.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2016
, “
Novel Considerations on Static Force Modeling of Pneumatic Muscle Actuators
,”
IEEE/ASME Trans Mechatronics
,
21
(
6
), pp.
2647
2659
.
42.
Carlo Ferraresi
,
W. F.
,
Walter Franco
,
W.
, and
Bertetto
,
A.
,
2001
, “
Flexible Pneumatic Actuators: A Comparison Between the Mckibben and the Straight Fibres Muscles
,”
J. Rob. Mechatronics
,
13
(
1
), pp.
56
63
.
43.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of Mckibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.
44.
Delson
,
N.
,
Hanak
,
T.
,
Loewke
,
K.
, and
Miller
,
D. N.
,
2005
, “
Modeling and Implementation of McKibben Actuators for a Hopping Robot
,”
12th International Conference on Advanced Robotics
(
ICAR
), Seattle, WA, July 18–20, pp.
833
840
.
45.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
46.
Rivlin
,
R.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. London A
,
241
(
835
), pp.
379
397
.
47.
Klute
,
G. K.
, and
Hannaford
,
B.
,
2000
, “
Accounting for Elastic Energy Storage in Mckibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
386
388
.
48.
Woods
,
B. K.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2011
, “
Wind Tunnel Testing of a Helicopter Rotor Trailing Edge Flap Actuated Via Pneumatic Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1513
1528
.
49.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
.
50.
Kim
,
B.
,
Lee
,
S. B.
,
Lee
,
J.
,
Cho
,
S.
,
Park
,
H.
,
Yeom
,
S.
, and
Park
,
S. H.
, “
A Comparison Among Neo-Hookean Model, Mooney-Rivlin Model and Ogden Model for Cholorprene Rubber
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
759
764
.
51.
Wang
,
G.
,
Wereley
,
N. M.
, and
Pillsbury
,
T.
,
2015
, “
Non-Linear Quasi-Static Model of Pneumatic Artificial Muscle Actuators
,”
J. Intell. Mater. Syst. Struct.
,
26
(
5
), pp.
541
553
.
52.
Doumit
,
M. D.
,
2009
, “
Characterization, Modeling and Design of the Braided Pneumatic Muscle
,”
Ph.D. thesis
, University of Ottawa, Ottawa, ON, Canada.
53.
Hocking
,
E. G.
, and
Wereley
,
N. M.
,
2012
, “
Analysis of Nonlinear Elastic Behavior in Miniature Pneumatic Artificial Muscles
,”
Smart Mater. Struct.
,
22
(
1
), p.
014016
.
54.
Liu
,
W.
, and
Rahn
,
C.
,
2003
, “
Fiber-Reinforced Membrane Models of Mckibben Actuators
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
853
859
.
55.
Kydoniefs
,
A.
, and
Salathe
,
E. P.
,
1974
, “
Finite Cylindrical Deformations of a Reinforced Elastic Tube
,”
Int. J. Eng. Sci.
,
12
(
6
), pp.
519
535
.
56.
Green
,
A. E.
, and
Adkins
,
J. E.
,
1970
,
Large Elastic Deformations
, Vol.
1
,
Clarendon Press
,
Oxford, UK
.
57.
Ball
,
E.
, and
Garcia
,
E.
,
2016
, “
Effects of Bladder Geometry in Pneumatic Artificial Muscles
,”
ASME J. Med. Devices
,
10
(
4
), p.
041001
.
58.
Goulbourne
,
N.
,
2009
, “
A Mathematical Model for Cylindrical, Fiber Reinforced Electro-Pneumatic Actuators
,”
Int. J. Solids Struct.
,
46
(
5
), pp.
1043
1052
.
59.
Chen
,
D.
, and
Ushijima
,
K.
,
2014
, “
Prediction of the Mechanical Performance of Mckibben Artificial Muscle Actuator
,”
Int. J. Mech. Sci.
,
78
, pp.
183
192
.
60.
Zhang
,
W.
,
Accorsi
,
M. L.
, and
Leonard
,
J. W.
,
2005
, “
Analysis of Geometrically Nonlinear Anisotropic Membranes: Application to Pneumatic Muscle Actuators
,”
Finite Elem. Anal. Des.
,
41
(
9–10
), pp.
944
962
.
61.
Antonelli
,
M. G.
,
Beomonte Zobel
,
P.
,
Durante
,
F.
, and
Raparelli
,
T.
,
2017
, “
Numerical Modelling and Experimental Validation of a Mckibben Pneumatic Muscle Actuator
,”
J. Intell. Mater. Syst. Struct.
,
28
(
19
), pp.
2737
2748
.
62.
Sangian
,
D.
,
Naficy
,
S.
,
Spinks
,
G. M.
, and
Tondu
,
B.
,
2015
, “
The Effect of Geometry and Material Properties on the Performance of a Small Hydraulic Mckibben Muscle System
,”
Sens. Actuators A: Phys.
,
234
, pp.
150
157
.
63.
Pujana-Arrese
,
A.
,
Mendizabal
,
A.
,
Arenas
,
J.
,
Prestamero
,
R.
, and
Landaluze
,
J.
,
2010
, “
Modelling in Modelica and Position Control of a 1-Dof Set-Up Powered by Pneumatic Muscles
,”
Mechatronics
,
20
(
5
), pp.
535
552
.
64.
Ganguly
,
S.
,
Garg
,
A.
,
Pasricha
,
A.
, and
Dwivedy
,
S.
,
2012
, “
Control of Pneumatic Artificial Muscle System Through Experimental Modelling
,”
Mechatronics
,
22
(
8
), pp.
1135
1147
.
65.
Sui
,
L.
, and
Xie
,
S.
,
2013
, “
Modelling of Pneumatic Muscle Actuator and Antagonistic Joint Using Linearised Parameters
,”
Int. J. Biomechatronics Biomed. Rob.
,
2
(
2/3/4
), pp.
67
74
.
66.
Tondu
,
B.
,
2012
, “
Closed-Loop Position Control of Artificial Muscles With a Single Integral Action: Application to Robust Positioning of Mckibben Artificial Muscle
,”
IEEE International Conference on Mechatronics
(
ICM
), Vicenza, Italy, Feb. 27–Mar. 1, pp.
718
723
.
67.
Tondu
,
B.
,
2015
, “
Single Linear Integral Action Control for Closed-Loop Positioning of a Biomimetic Actuator With Artificial Muscles
,”
European Control Conference
(
ECC
), Linz, Austria, July 15–17, pp.
3585
3590
.
68.
Van Damme
,
M.
,
Beyl
,
P.
,
Vanderborght
,
B.
,
Van Ham
,
R.
,
Vanderniepen
,
I.
,
Versluys
,
R.
,
Daerden
,
F.
, and
Lefeber
,
D.
,
2008
, “
Modeling Hysteresis in Pleated Pneumatic Artificial Muscles
,”
IEEE
Conference on Robotics, Automation and Mechatronics
, Chengdu, China, Sept. 21–24, pp.
471
476
.
69.
Stakvik
,
J. A.
,
Ragazzon
,
M. R. P.
,
Eielsen
,
A. A.
, and
Gravdahl
,
J. T.
,
2015
, “
On Implementation of the Preisach Model: Identification and Inversion for Hysteresis Compensation
,”
Model., Identif. Control
,
36
(
3
), pp.
133
142
.
70.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
.
71.
Minh
,
T. V.
,
Tjahjowidodo
,
T.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2009
, “
Control of a Pneumatic Artificial Muscle (PAM) With Model-Based Hysteresis Compensation
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Singapore, July 14–17, pp.
1082
1087
.
72.
Vo-Minh
,
T.
,
Tjahjowidodo
,
T.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2011
, “
A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using the Maxwell-Slip Model
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
177
186
.
73.
Lin
,
C. J.
,
Lin
,
C. R.
,
Yu
,
S. K.
, and
Chen
,
C. T.
,
2015
, “
Hysteresis Modeling and Tracking Control for a Dual Pneumatic Artificial Muscle System Using Prandtl–Ishlinskii Model
,”
Mechatronics
,
28
, pp.
35
45
.
74.
Ismail
,
M.
,
Ikhouane
,
F.
, and
Rodellar
,
J.
,
2009
, “
The Hysteresis Bouc-Wen Model, a Survey
,”
Arch. Comput. Methods Eng.
,
16
(
2
), pp.
161
188
.
75.
Visintin
,
A.
,
2013
, “
Differential Models of Hysteresis
,” Vol.
3
,
Springer Science & Business Media
,
Heidelberg, Germany
.
76.
Xie
,
S.
,
Mei
,
J.
,
Liu
,
H.
, and
Wang
,
Y.
,
2018
, “
Hysteresis Modeling and Trajectory Tracking Control of the Pneumatic Muscle Actuator Using Modified Prandtl–Ishlinskii Model
,”
Mech. Mach. Theory
,
120
, pp.
213
224
.
77.
Aschemann
,
H.
, and
Schindele
,
D.
,
2014
, “
Comparison of Model-Based Approaches to the Compensation of Hysteresis in the Force Characteristic of Pneumatic Muscles
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3620
3629
.
78.
Liu
,
Y.
,
Zang
,
X.
,
Lin
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2017
, “
Modelling Length/Pressure Hysteresis of a Pneumatic Artificial Muscle Using a Modified Prandtl-Ishlinskii Model
,”
J. Mech. Eng.
,
63
(
1
), pp.
56
64
.
79.
Hao
,
L.
,
Yang
,
H.
,
Sun
,
Z.
,
Xiang
,
C.
, and
Xue
,
B.
,
2017
, “
Modeling and Compensation Control of Asymmetric Hysteresis in a Pneumatic Artificial Muscle
,”
J. Intell. Mater. Syst. Struct.
,
28
(
19
), pp.
2769
2780
.
80.
Jog
,
C. S.
,
2015
,
Continuum Mechanics
, Vol.
1
,
Cambridge University Press
,
Cambridge, UK
.
81.
Chapman
,
E.
,
Jenkins
,
T.
, and
Bryant
,
M.
,
2016
, “
Parametric Study of a Fluidic Artificial Muscle Actuated Electrohydraulic System
,”
ASME
Paper No. SMASIS2016-9044.
82.
Wakimoto
,
S.
,
Misumi
,
J.
, and
Suzumori
,
K.
,
2016
, “
New Concept and Fundamental Experiments of a Smart Pneumatic Artificial Muscle With a Conductive Fiber
,”
Sens. Actuators A: Phys.
,
250
, pp.
48
54
.
83.
Erin
,
O.
,
Pol
,
N.
,
Valle
,
L.
, and
Park
,
Y. L.
,
2016
, “
Design of a Bio-Inspired Pneumatic Artificial Muscle With Self-Contained Sensing
,”
IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society
(
EMBC
), Orlando, FL, Aug. 16–20, pp.
2115
2119
.
84.
Al-Fahaam
,
H.
,
Davis
,
S.
, and
Nefti-Meziani
,
S.
,
2018
, “
The Design and Mathematical Modelling of Novel Extensor Bending Pneumatic Artificial Muscles (EBPAMS) for Soft Exoskeletons
,”
Rob. Auton. Syst.
,
99
, pp.
63
74
.
85.
Bishop-Moser
,
J.
, and
Kota
,
S.
,
2015
, “
Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
536
545
.
86.
Sangian
,
D.
,
Naficy
,
S.
, and
Spinks
,
G. M.
,
2016
, “
Thermally Activated Paraffin-Filled Mckibben Muscles
,”
J. Intell. Mater. Syst. Struct.
,
27
(
18
), pp.
2508
2516
.
87.
Ball
,
E. J.
,
Meller
,
M. A.
,
Chipka
,
J. B.
, and
Garcia
,
E.
,
2016
, “
Modeling and Testing of a Knitted-Sleeve Fluidic Artificial Muscle
,”
Smart Mater. Struct.
,
25
(
11
), p.
115024
.
88.
Park
,
Y. L.
,
Santos
,
J.
,
Galloway
,
K. G.
,
Goldfield
,
E. C.
, and
Wood
,
R. J.
,
2014
, “
A Soft Wearable Robotic Device for Active Knee Motions Using Flat Pneumatic Artificial Muscles
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
4805
4810
.
You do not currently have access to this content.