Abstract

Acoustic/elastic metasurfaces as a kind of two-dimensional metamaterials are of subwavelength thickness and show remarkable ability of acoustic/elastic wave manipulation. They have potential applications in various fields such as acoustic imaging, communications, cloaking, camouflage, vibration/noise control, energy harvesting, and nondestructive testing. In this review, we mainly summarize recent developments in acoustic/elastic phase gradient metasurfaces, including design principles, design of functional elements, wave field manipulation with applications, design of tunable metasurfaces, as well as the emerging digital coding metasurfaces. At last, we outline the future research directions in this field.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.10.1115/1.4026911
2.
Wang
,
Y. F.
,
Wang
,
Y. Z.
,
Wu
,
B.
,
Chen
,
W. Q.
, and
Wang
,
Y. S.
,
2020
, “
Tunable and Active Phononic Crystals and Metamaterials
,”
ASME Appl. Mech. Rev.
,
72
(
4
), p.
040801
.10.1115/1.4046222
3.
Liao
,
G. X.
,
Luan
,
C. C.
,
Wang
,
Z. W.
,
Liu
,
J. P.
,
Yao
,
X. H.
, and
Fu
,
J. Z.
,
2021
, “
Acoustic Metamaterials a Review of Theories, Structures, Fabrication Approaches, and Applications
,”
Adv. Mater. Technol.
,
6
(
5
), p.
2000787
.10.1002/admt.202000787
4.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.10.1016/0022-460X(92)90059-7
5.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.10.1103/PhysRevLett.71.2022
6.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Z. Z.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.10.1126/science.289.5485.1734
7.
Assouar
,
B.
,
Liang
,
B.
,
Wu
,
Y.
,
Li
,
Y.
,
Cheng
,
J. C.
, and
Jing
,
Y.
,
2018
, “
Acoustic Metasurfaces
,”
Nat. Rev. Mater.
,
3
(
12
), pp.
460
472
.10.1038/s41578-018-0061-4
8.
Liang
,
B.
,
Cheng
,
J. C.
, and
Qiu
,
C. W.
,
2018
, “
Wavefront Manipulation by Acoustic Metasurfaces: From Physics and Applications
,”
Nanophotonics
,
7
(
6
), pp.
1191
1205
.10.1515/nanoph-2017-0122
9.
Zeng
,
Y.
,
Cao
,
L. Y.
,
Zhu
,
Y. F.
,
Wang
,
Y. F.
,
Du
,
Q. J.
,
Wang
,
Y. S.
, and
Assouar
,
B.
,
2021
, “
Coupling the First and Second Attenuation Zones in Seismic Metasurface
,”
Appl. Phys. Lett.
,
119
(
1
), p.
013501
.10.1063/5.0054606
10.
Yuan
,
S. M.
,
Ma
,
T. X.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
,
2018
, “
Liquid-Assisted Tunable Metasurface for Simultaneous Manipulation of Surface Elastic and Acoustic Waves
,”
AIP Adv.
,
8
(
3
), p.
035026
.10.1063/1.5011194
11.
Liu
,
T.
,
Chen
,
F.
,
Liang
,
S. J.
,
Gao
,
H.
, and
Zhu
,
J.
,
2019
, “
Subwavelength Sound Focusing and Imaging Via Gradient Metasurface-Enabled Spoof Surface Acoustic Wave Modulation
,”
Phys. Rev. Appl.
,
11
, p.
034061
.10.1103/PhysRevApplied.11.034061
12.
Quan
,
L.
, and
Alù
,
A.
,
2019
, “
Hyperbolic Sound Propagation Over Nonlocal Acoustic Metasurfaces
,”
Phys. Rev. Lett.
,
123
(
24
), p.
244303
.10.1103/PhysRevLett.123.244303
13.
Yu
,
N. F.
,
Genevet
,
P.
,
Kats
,
M. A.
,
Aieta
,
F.
,
Tetienne
,
J. P.
,
Capasso
,
F.
, and
Gaburro
,
Z.
,
2011
, “
Light Propagation With Phase Discontinuities: Generalized Laws of Reflection and Refraction
,”
Science
,
334
(
6054
), pp.
333
337
.10.1126/science.1210713
14.
Chen
,
H.-T.
,
Taylor
,
A. J.
, and
Yu
,
N.
,
2016
, “
A Review of Metasurfaces: Physics and Applications
,”
Rep. Prog. Phys.
,
79
(
7
), p.
076401
.10.1088/0034-4885/79/7/076401
15.
Li
,
Y.
,
Liang
,
B.
,
Gu
,
Z. M.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
,
2013
, “
Reflected Wavefront Manipulation Based on Ultrathin Planar Acoustic Metasurfaces
,”
Sci. Rep.
,
3
, p.
2546
.10.1038/srep02546
16.
Xie
,
Y. B.
,
Wang
,
W. Q.
,
Chen
,
H. Y.
,
Konneker
,
A.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface
,”
Nat. Commun.
,
5
, p.
5553
.10.1038/ncomms6553
17.
Díaz-Rubio
,
A.
, and
Tretyakov
,
S. A.
,
2017
, “
Acoustic Metasurfaces for Scattering-Free Anomalous Reflection and Refraction
,”
Phys. Rev. B
,
96
(
12
), p.
125409
.10.1103/PhysRevB.96.125409
18.
Zhao
,
S. D.
,
Chen
,
A. L.
,
Wang
,
Y. S.
, and
Zhang
,
C.
,
2018
, “
Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation
,”
Phys. Rev. Appl.
,
10
(
5
), p.
054066
.10.1103/PhysRevApplied.10.054066
19.
Chen
,
X.
,
Liu
,
P.
,
Hou
,
Z. W.
, and
Pei
,
Y. M.
,
2017
, “
Magnetic-Control Multifunctional Acoustic Metasurface for Reflected Wave Manipulation at Deep Subwavelength Scale
,”
Sci. Rep.
,
7
(
1
), p.
9050
.10.1038/s41598-017-09652-w
20.
Liu
,
P.
,
Chen
,
X.
,
Xu
,
W. D.
, and
Pei
,
Y. M.
,
2020
, “
Magnetically Controlled Multifunctional Membrane Acoustic Metasurface
,”
J. Appl. Phys.
,
127
(
18
), p.
185104
.10.1063/1.5145289
21.
Chen
,
Y. Y.
,
Li
,
X. P.
,
Nassar
,
H.
,
Hu
,
G. K.
, and
Huang
,
G. L.
,
2018
, “
A Programmable Metasurface for Real Time Control of Broadband Elastic Rays
,”
Smart Mater. Struct.
,
27
(
11
), p.
115011
.10.1088/1361-665X/aae27b
22.
Yuan
,
S. M.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
,
2020
, “
Switchable Multifunctional Fish-Bone Elastic Metasurface for Transmitted Flexural Wave Modulation
,”
J. Sound Vib.
,
470
, p.
115168
.10.1016/j.jsv.2019.115168
23.
Zuo
,
S. Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2019
, “
Tunable Perfect Negative Reflection Based on an Acoustic Coding Metasurface
,”
Appl. Phys. Lett.
,
114
(
20
), p.
203505
.10.1063/1.5093700
24.
He
,
Q.
,
Sun
,
S. L.
, and
Zhou
,
L.
,
2019
, “
Tunable/Reconfigurable Metasurfaces: Physics and Applications
,”
Research
,
2019
, pp.
1
16
.10.34133/2019/1849272
25.
Luo
,
S. S.
,
Hao
,
J. J.
,
Ye
,
F. J.
,
Li
,
J. X.
,
Ruan
,
Y.
,
Cui
,
H. Y.
,
Liu
,
W. J.
, and
Chen
,
L.
,
2021
, “
Evolution of the Electromagnetic Manipulation: From Tunable to Programmable and Intelligent Metasurfaces
,”
Micromachines
,
12
(
8
), p.
988
.10.3390/mi12080988
26.
Zahra
,
S.
,
Ma
,
L.
,
Wang
,
W. J.
,
Li
,
J.
,
Chen
,
D. X.
,
Liu
,
Y. F.
,
Zhou
,
Y. D.
,
Li
,
N.
,
Huang
,
Y. J.
, and
Wen
,
G. J.
,
2021
, “
Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review
,”
Front. Phys.
,
8
, p.
593411
.10.3389/fphy.2020.593411
27.
Xie
,
B. Y.
,
Tang
,
K.
,
Cheng
,
H.
,
Liu
,
Z. Y.
,
Chen
,
S. Q.
, and
Tian
,
J. G.
,
2017
, “
Coding Acoustic Metasurfaces
,”
Adv. Mater.
,
29
(
6
), p.
1603507
.10.1002/adma.201603507
28.
Aieta
,
F.
,
Genevet
,
P.
,
Yu
,
N.
,
Kats
,
M. A.
,
Gaburro
,
Z.
, and
Capasso
,
F.
,
2012
, “
Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces With Phase Discontinuities
,”
Nano Lett.
,
12
(
3
), pp.
1702
1706
.10.1021/nl300204s
29.
Aieta
,
F.
,
Kabiri
,
A.
,
Genevet
,
P.
,
Yu
,
N.
,
Kats
,
M. A.
,
Gaburro
,
Z.
, and
Capasso
,
F.
,
2012
, “
Reflection and Refraction of Light From Metasurfaces With Phase Discontinuities
,”
J. Nanophotonics
,
6
(
1
), p. 0
63532
.10.1117/1.JNP.6.063532
30.
Chen
,
A. L.
,
Tang
,
Q. Y.
,
Zhao
,
S. D.
, and
Wang
,
Y. S.
,
2020
, “
Multifunction Switching by a Flat Structurally Tunable Acoustic Metasurface for Transmitted Waves
,”
Sci. China-Phys. Mech. Astron.
,
63
(
4
), p.
244611
.10.1007/s11433-019-1498-2
31.
Esfahlani
,
H.
,
Karkar
,
S.
,
Lissek
,
H.
, and
Mosig
,
J. R.
,
2016
, “
Acoustic Carpet Cloak Based on an Ultrathin Metasurface
,”
Phys. Rev. B
,
94
(
1
), p.
014302
.10.1103/PhysRevB.94.014302
32.
Li
,
X. S.
,
Wang
,
Y. F.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
,
2019
, “
Modulation of Out-of-Plane Reflected Waves by Using Acoustic Metasurfaces With Tapered Corrugated Holes
,”
Sci. Rep.
,
9
(
1
), p.
15856
.10.1038/s41598-019-52441-w
33.
Li
,
X. S.
,
Wang
,
Y. F.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
,
2020
, “
An Arbitrarily Curved Acoustic Metasurface for Three-Dimensional Reflected Wave-Front Modulation
,”
J. Phys. D Appl. Phys.
,
53
(
19
), p.
195301
.10.1088/1361-6463/ab7327
34.
Fan
,
S. W.
,
Zhao
,
S. D.
,
Cao
,
L. Y.
,
Zhu
,
Y. F.
,
Chen
,
A. L.
,
Wang
,
Y. F.
,
Donda
,
K.
,
Wang
,
Y. S.
, and
Assouar
,
B.
,
2020
, “
Reconfigurable Curved Metasurface for Acoustic Cloaking and Illusion
,”
Phys. Rev. B
,
101
(
2
), p.
024104
.10.1103/PhysRevB.101.024104
35.
Tang
,
K.
,
Qiu
,
C.
,
Ke
,
M. Z.
,
Lu
,
J.
,
Ye
,
Y.
, and
Liu
,
Z. Y.
,
2014
, “
Anomalous Refraction of Airborne Sound Through Ultrathin Metasurfaces
,”
Sci. Rep.
,
4
, p.
6517
.10.1038/srep06517
36.
Cao
,
L. Y.
,
Yang
,
Z. C.
, and
Xu
,
Y. L.
,
2018
, “
Steering Elastic SH Waves in an Anomalous Way by Metasurface
,”
J. Sound Vib.
,
418
, pp.
1
14
.10.1016/j.jsv.2017.12.032
37.
Wang
,
W. Q.
,
Xie
,
Y. B.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2016
, “
Subwavelength Diffractive Acoustics and Wavefront Manipulation With a Reflective Acoustic Metasurface
,”
J. Appl. Phys.
,
120
(
19
), p.
195103
.10.1063/1.4967738
38.
Hou
,
Z. L.
,
Fang
,
X. S.
,
Li
,
Y.
, and
Assouar
,
B.
,
2019
, “
Highly Efficient Acoustic Metagrating With Strongly Coupled Surface Grooves
,”
Phys. Rev. Appl.
,
12
, p.
034021
.10.1103/PhysRevApplied.12.034021
39.
Fang
,
Y.
,
Zhang
,
X.
, and
Zhou
,
J.
,
2017
, “
Sound Transmission Through an Acoustic Porous Metasurface With Periodic Structures
,”
Appl. Phys. Lett.
,
110
(
17
), p.
171904
.10.1063/1.4982633
40.
Zhou
,
H. T.
,
Fu
,
W. X.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
,
2021
, “
High-Efficiency Ultrathin Nonlocal Waterborne Acoustic Metasurface
,”
Phys. Rev. Appl.
,
15
, p.
044046
.10.1103/PhysRevApplied.15.044046
41.
Chiang
,
Y. K.
,
Quan
,
L.
,
Peng
,
Y.
,
Sepehrirahnama
,
S.
,
Oberst
,
S.
,
Alù
,
A.
, and
Powell
,
D.
,
2021
, “
Scalable Metagrating for Efficient Ultrasonic Focusing
,”
Phys. Rev. Appl.
,
16
, p.
064014
.10.1103/PhysRevApplied.16.064014
42.
Bernard
,
S.
,
Chikh-Bled
,
F.
,
Kourchi
,
H.
,
Chati
,
F.
, and
Léon
,
F.
,
2022
, “
Broadband Negative Reflection of Underwater Acoustic Waves From a Simple Metagrating: Modeling and Experiment
,”
Phys. Rev. Appl.
,
17
, p.
024059
.10.1103/PhysRevApplied.17.024059
43.
Zhao
,
J. J.
,
Li
,
B. W.
,
Chen
,
Z. N.
, and
Qiu
,
C. W.
,
2013
, “
Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection
,”
Sci. Rep.
,
3
, p.
2537
.10.1038/srep02537
44.
Zhao
,
J. J.
,
Li
,
B. W.
,
Chen
,
Z. N.
, and
Qiu
,
C. W.
,
2013
, “
Redirection of Sound Waves Using Acoustic Metasurface
,”
Appl. Phys. Lett.
,
103
(
15
), p.
151604
.10.1063/1.4824758
45.
Díaz-Rubio
,
A.
,
Asadchy
,
V. S.
,
Elsakka
,
A.
, and
Tretyakov
,
S. A.
,
2017
, “
From the Generalized Reflection Law to the Realization of Perfect Anomalous Reflectors
,”
Sci. Adv.
,
3
(
8
), p.
e1602714
.10.1126/sciadv.1602714
46.
Asadchy
,
V. S.
,
Albooyeh
,
M.
,
Tcvetkova
,
S. N.
,
Díaz-Rubio
,
A.
,
Ra'di
,
Y.
, and
Tretyakov
,
S. A.
,
2016
, “
Perfect Control of Reflection and Refraction Using Spatially Dispersive Metasurfaces
,”
Phys. Rev. B
,
94
(
7
), p.
075142
.10.1103/PhysRevB.94.075142
47.
Zhu
,
X. F.
, and
Lau
,
S. K.
,
2019
, “
Reflected Wave Manipulation Via Acoustic Metamaterials With Decoupled Amplitude and Phase
,”
Appl. Phys. A
,
125
(
6
), p.
392
.10.1007/s00339-019-2687-5
48.
Díaz-Rubio
,
A.
,
Li
,
J. F.
,
Shen
,
C.
,
Cummer
,
S. A.
, and
Tretyakov
,
S. A.
,
2019
, “
Power Flow-Conformal Metamirrors for Engineering Wave Reflections
,”
Sci. Adv.
,
5
(
2
), p.
eaau7288
.10.1126/sciadv.aau7288
49.
Quan
,
L.
, and
Alù
,
A.
,
2019
, “
Passive Acoustic Metasurface With Unitary Reflection Based on Nonlocality
,”
Phys. Rev. Appl.
,
11
, p.
054077
.10.1103/PhysRevApplied.11.054077
50.
Li
,
J. F.
,
Shen
,
C.
,
Díaz-Rubio
,
A.
,
Tretyakov
,
S. A.
, and
Cummer
,
S. A.
,
2018
, “
Systematic Design and Experimental Demonstration of Bianisotropic Metasurfaces for Scattering-Free Manipulation of Acoustic Wavefronts
,”
Nat. Commun.
,
9
(
1
), p.
1342
.10.1038/s41467-018-03778-9
51.
Peng
,
X. Y.
,
Li
,
J. F.
,
Shen
,
C.
, and
Cummer
,
S. A.
,
2021
, “
Efficient Scattering-Free Wavefront Transformation With Power Flow Conformal Bianisotropic Acoustic Metasurfaces
,”
Appl. Phys. Lett.
,
118
(
6
), p.
061902
.10.1063/5.0033422
52.
Li
,
J. F.
,
Song
,
A. L.
, and
Cummer
,
S. A.
,
2020
, “
Bianisotropic Acoustic Metasurface for Surface-Wave-Enhanced Wavefront Transformation
,”
Phys. Rev. Appl.
,
14
, p.
044012
.10.1103/PhysRevApplied.14.044012
53.
Xie
,
H. F.
, and
Hou
,
Z. L.
,
2021
, “
Nonlocal Metasurface for Acoustic Focusing
,”
Phys. Rev. Appl.
,
15
, p.
034054
.10.1103/PhysRevApplied.15.034054
54.
Li
,
J. F.
,
Díaz-Rubio
,
A.
,
Shen
,
C.
,
Jia
,
Z. T.
,
Tretyakov
,
S. A.
, and
Cummer
,
S. A.
,
2019
, “
Highly Efficient Generation of Angular Momentum With Cylindrical Bianisotropic Metasurfaces
,”
Phys. Rev. Appl.
,
11
(
2
), p.
024016
.10.1103/PhysRevApplied.11.024016
55.
Song
,
A. L.
,
Li
,
J. F.
,
Peng
,
X. Y.
,
Shen
,
C.
,
Zhu
,
X. H.
,
Chen
,
T. N.
, and
Cummer
,
S. A.
,
2019
, “
Asymmetric Absorption in Acoustic Metamirror Based on Surface Impedance Engineering
,”
Phys. Rev. Appl.
,
12
, p.
054048
.10.1103/PhysRevApplied.12.054048
56.
Fan
,
S. W.
,
Zhao
,
S. D.
,
Chen
,
A. L.
,
Wang
,
Y. F.
,
Assouar
,
M. B.
, and
Wang
,
Y. S.
,
2019
, “
Tunable Broadband Reflective Acoustic Metasurface
,”
Phys. Rev. Appl.
,
11
(
4
), p.
044038
.10.1103/PhysRevApplied.11.044038
57.
Liang
,
Z. X.
, and
Li
,
J.
,
2012
, “
Extreme Acoustic Metamaterial by Coiling Up Space
,”
Phys. Rev. Lett.
,
108
(
11
), p.
114301
.10.1103/PhysRevLett.108.114301
58.
Li
,
Y.
,
Liang
,
B.
,
Tao
,
X.
,
Zhu
,
X. F.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
,
2012
, “
Acoustic Focusing by Coiling Up Space
,”
Appl. Phys. Lett.
,
101
(
23
), p.
233508
.10.1063/1.4769984
59.
Peng
,
P.
,
Xiao
,
B. M.
, and
Wu
,
Y.
,
2014
, “
Flat Acoustic Lens by Acoustic Grating With Curled Slits
,”
Phys. Lett. A
,
378
(
45
), pp.
3389
3392
.10.1016/j.physleta.2014.09.042
60.
Li
,
Y.
,
Yu
,
G.
,
Liang
,
B.
,
Zou
,
X.
,
Li
,
G.
,
Cheng
,
S.
, and
Cheng
,
J. C.
,
2015
, “
Three-Dimensional Ultrathin Planar Lenses by Acoustic Metamaterials
,”
Sci. Rep.
,
4
, p.
6830
.10.1038/srep06830
61.
Li
,
Y.
,
Liang
,
B.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
,
2013
, “
Extraordinary Acoustic Transmission Through Ultrathin Acoustic Metamaterials by Coiling Up Space
,”
Appl. Phys. Lett.
,
103
(
6
), p.
063509
.10.1063/1.4817925
62.
Liu
,
B. Y.
,
Ren
,
B.
,
Zhao
,
J. J.
,
Xu
,
X. D.
,
Feng
,
Y. X.
,
Zhao
,
W. Y.
, and
Jiang
,
Y. Y.
,
2017
, “
Experimental Realization of All-Angle Negative Refraction in Acoustic Gradient Metasurface
,”
Appl. Phys. Lett.
,
111
(
22
), p.
221602
.10.1063/1.5004005
63.
Zuo
,
S. Y.
,
Wei
,
Q.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2017
, “
Mathematical Operations for Acoustic Signals Based on Layered Labyrinthine Metasurfaces
,”
Appl. Phys. Lett.
,
110
(
1
), p.
011904
.10.1063/1.4973705
64.
Zuo
,
S. Y.
,
Wei
,
Q.
,
Tian
,
Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2018
, “
Acoustic Analog Computing System Based on Labyrinthine Metasurfaces
,”
Sci. Rep.
,
8
(
1
), p.
10103
.10.1038/s41598-018-27741-2
65.
Memoli
,
G.
,
Caleap
,
M.
,
Asakawa
,
M.
,
Sahoo
,
D. R.
,
Drinkwater
,
B. W.
, and
Subramanian
,
S.
,
2016
, “
Metamaterial Bricks and Quantization of Meta-Surfaces
,”
Nat. Commun.
,
8
, p.
14608
.10.1038/ncomms14608
66.
Ghaffarivardavagh
,
R.
,
Nikolajczyk
,
J.
,
Holt
,
R. G.
,
Anderson
,
S.
, and
Zhang
,
X.
,
2018
, “
Horn-Like Space-Coiling Metamaterials Toward Simultaneous Phase and Amplitude Modulation
,”
Nat. Commun.
,
9
(
1
), p.
1349
.10.1038/s41467-018-03839-z
67.
Molerón
,
M.
,
Serra-Garcia
,
M.
, and
Daraio
,
C.
,
2014
, “
Acoustic Fresnel Lenses With Extraordinary Transmission
,”
Appl. Phys. Lett.
,
105
(
11
), p.
114109
.10.1063/1.4896276
68.
Jia
,
Z. T.
,
Li
,
J. F.
,
Shen
,
C.
,
Xie
,
Y. B.
, and
Cummer
,
S. A.
,
2018
, “
Systematic Design of Broadband Path-Coiling Acoustic Metamaterials
,”
J. Appl. Phys.
,
123
(
2
), p.
025101
.10.1063/1.5009488
69.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2018
, “
Dynamic Generation and Modulation of Acoustic Bottle beams by Metasurfaces
,”
Sci. Rep.
,
8
, p.
12682
.10.1038/s41598-018-31066-5
70.
Jia
,
Y. R.
,
Ji
,
W. Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2018
, “
Metasurface-Enabled Airborne Fractional Acoustic Vortex Emitter
,”
Appl. Phys. Lett.
,
113
(
17
), p.
173502
.10.1063/1.5051696
71.
Zuo
,
S. Y.
,
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2018
, “
Acoustic Analog Computing Based on a Reflective Metasurface With Decoupled Modulation of Phase and Amplitude
,”
J. Appl. Phys.
,
123
(
9
), p.
091704
.10.1063/1.5004617
72.
Ju
,
F. F.
,
Tian
,
Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2018
, “
Asymmetric Acoustic Transmission With a Lossy Gradient-Index Metasurface
,”
Appl. Phys. Lett.
,
113
(
12
), p.
121901
.10.1063/1.5032263
73.
Tang
,
W. P.
,
Ren
,
C. Y.
,
Tong
,
S. S.
, and
Huang
,
X. C.
,
2019
, “
Sandwich-Like Space-Coiling Metasurfaces for Weak-Dispersion High-Efficiency Transmission
,”
Appl. Phys. Lett.
,
115
(
13
), p.
134102
.10.1063/1.5120494
74.
Tang
,
W. P.
, and
Ren
,
C. Y.
,
2017
, “
Total Transmission of Airborne Sound by Impedance-Matched Ultra-Thin Metasurfaces
,”
J. Phys. D Appl. Phys.
,
50
(
10
), p.
105102
.10.1088/1361-6463/aa5a86
75.
Jahdali
,
R. A.
, and
Wu
,
Y.
,
2016
, “
High Transmission Acoustic Focusing by Impedance-Matched Acoustic Meta-Surfaces
,”
Appl. Phys. Lett.
,
108
(
3
), p.
031902
.10.1063/1.4939932
76.
Zhu
,
X. F.
,
Li
,
K.
,
Zhang
,
P.
,
Zhu
,
J.
,
Zhang
,
J. T.
,
Tian
,
C.
, and
Liu
,
S. C.
,
2016
, “
Implementation of Dispersion-Free Slow Acoustic Wave Propagation and Phase Engineering With Helical-Structured Metamaterials
,”
Nat. Commun.
,
7
, p.
11731
.10.1038/ncomms11731
77.
Ding
,
Y.
,
Statharas
,
E. C.
,
Yao
,
K.
, and
Hong
,
M.
,
2017
, “
A Broadband Acoustic Metamaterial With Impedance Matching Layer of Gradient Index
,”
Appl. Phys. Lett.
,
110
(
24
), p.
241903
.10.1063/1.4986472
78.
Esfahlani
,
H.
,
Lissek
,
H.
, and
Mosig
,
J. R.
,
2017
, “
Generation of Acoustic Helical Wavefronts Using Metasurfaces
,”
Phys. Rev. B
,
95
(
2
), p.
024312
.10.1103/PhysRevB.95.024312
79.
Liang
,
S. J.
,
Liu
,
T.
,
Gao
,
H.
,
Gu
,
Z. M.
,
An
,
S. W.
, and
Zhu
,
J.
,
2020
, “
Acoustic Metasurface by Layered Concentric Structures
,”
Phys. Rev. Res.
,
2
, p.
043362
.10.1103/PhysRevResearch.2.043362
80.
Tang
,
K.
,
Qiu
,
C. Y.
,
Lu
,
J. Y.
,
Ke
,
M. Z.
, and
Liu
,
Z. Y.
,
2015
, “
Focusing and Directional Beaming Effects of Airborne Sound Through a Planar Lens With Zigzag Slits
,”
J. Appl. Phys.
,
117
(
2
), p.
024503
.10.1063/1.4905910
81.
Lan
,
J.
,
Li
,
Y. F.
, and
Liu
,
X. Z.
,
2017
, “
Broadband Manipulation of Refracted Wavefronts by Gradient Acoustic Metasurface With V-Shape Structure
,”
Appl. Phys. Lett.
,
111
(
26
), p.
263501
.10.1063/1.5005950
82.
Li
,
Y.
,
Jiang
,
X.
,
Li
,
R. Q.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yin
,
L. L.
, and
Cheng
,
J. C.
,
2014
, “
Experimental Realization of Full Control of Reflected Waves With Subwavelength Acoustic Metasurfaces
,”
Phys. Rev. Appl.
,
2
, p.
064002
.10.1103/PhysRevApplied.2.064002
83.
Liu
,
B. Y.
,
Zhao
,
J. J.
,
Xu
,
X. D.
,
Zhao
,
W. Y.
, and
Jiang
,
Y. Y.
,
2017
, “
All-Angle Negative Reflection With an Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification
,”
Sci. Rep.
,
7
(
1
), p.
13852
.10.1038/s41598-017-14387-9
84.
Qi
,
S.
, and
Assouar
,
B.
,
2017
, “
Acoustic Energy Harvesting Based on Multilateral Metasurfaces
,”
Appl. Phys. Lett.
,
111
(
24
), p.
243506
.10.1063/1.5003299
85.
Qi
,
S.
,
Li
,
Y.
, and
Assouar
,
B.
,
2017
, “
Acoustic Focusing and Energy Confinement Based on Multilateral Metasurfaces
,”
Phys. Rev. Appl.
,
7
, p.
054006
.10.1103/PhysRevApplied.7.054006
86.
Wang
,
X.
,
Mao
,
D. X.
, and
Li
,
Y.
,
2017
, “
Broadband Acoustic Skin Cloak Based on Spiral Metasurfaces
,”
Sci. Rep.
,
7
(
1
), p.
11604
.10.1038/s41598-017-11846-1
87.
Li
,
J.
, and
Pendry
,
J. B.
,
2008
, “
Hiding Under the Carpet: A New Strategy for Cloaking
,”
Phys. Rev. Lett.
,
101
(
20
), p.
203901
.10.1103/PhysRevLett.101.203901
88.
Zhu
,
Y. F.
,
Zou
,
X. Y.
,
Li
,
R. Q.
,
Jiang
,
X.
,
Tu
,
J.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2015
, “
Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface
,”
Sci. Rep.
,
5
, p.
10966
.10.1038/srep10966
89.
Zhu
,
Y. F.
,
Fan
,
X. D.
,
Liang
,
B.
,
Yang
,
J.
,
Yang
,
J.
,
Yin
,
L. L.
, and
Cheng
,
J. C.
,
2016
, “
Multi-Frequency Acoustic Metasurface for Extraordinary Reflection and Sound Focusing
,”
AIP Adv.
,
6
(
12
), p.
121702
.10.1063/1.4968607
90.
Shen
,
C.
,
Díaz-Rubio
,
A.
,
Li
,
J. F.
, and
Cummer
,
S. A.
,
2018
, “
A Surface Impedance-Based Three-Channel Acoustic Metasurface Retroreflector
,”
Appl. Phys. Lett.
,
112
(
18
), p.
183503
.10.1063/1.5025481
91.
Li
,
Y.
,
Jiang
,
X.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Zhang
,
L.
,
2015
, “
Metascreen-Based Acoustic Passive Phased Array
,”
Phys. Rev. Appl.
,
4
, p.
024003
.10.1103/PhysRevApplied.4.024003
92.
Li
,
Y.
,
Qi
,
S. B.
, and
Assouar
,
M. B.
,
2016
, “
Theory of Metascreen-Based Acoustic Passive Phased Array
,”
New J. Phys.
,
18
(
4
), p.
043024
.10.1088/1367-2630/18/4/043024
93.
Lan
,
J.
,
Li
,
Y. F.
,
Xu
,
Y.
, and
Liu
,
X. Z.
,
2017
, “
Manipulation of Acoustic Wavefront by Gradient Metasurface Based on Helmholtz Resonators
,”
Sci. Rep.
,
7
(
1
), p.
10587
.10.1038/s41598-017-10781-5
94.
Li
,
Y.
, and
Assouar
,
M. B.
,
2015
, “
Three-Dimensional Collimated Self-Accelerating Beam Through Acoustic Metascreen
,”
Sci. Rep.
,
5
, p.
17612
.10.1038/srep17612
95.
Jiang
,
X.
,
Li
,
Y.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Zhang
,
L. K.
,
2016
, “
Convert Acoustic Resonances to Orbital Angular Momentum
,”
Phys. Rev. Lett.
,
117
(
3
), p.
034301
.10.1103/PhysRevLett.117.034301
96.
Han
,
L. X.
,
Yao
,
Y. W.
,
Zhang
,
X.
,
Wu
,
F. G.
,
Dong
,
H. F.
,
Mu
,
Z. F.
, and
Li
,
J. B.
,
2018
, “
Acoustic Metasurface for Refracted Wave Manipulation
,”
Phys. Lett. A
,
382
(
5
), pp.
357
361
.10.1016/j.physleta.2017.12.004
97.
Dong
,
Y. B.
,
Wang
,
Y. B.
,
Sun
,
J. X.
,
Ding
,
C. L.
,
Zhai
,
S. L.
, and
Zhao
,
X. P.
,
2020
, “
Transmission Control of Acoustic Metasurface With Dumbbell-Shaped Double-Split Hollow Sphere
,”
Mod. Phys. Lett. B
,
34
(
33
), p.
2050386
.10.1142/S0217984920503868
98.
Zhai
,
S. L.
,
Chen
,
H. J.
,
Ding
,
C. L.
,
Shen
,
F. L.
,
Luo
,
C. R.
, and
Zhao
,
X. P.
,
2015
, “
Manipulation of Transmitted Wave Front Using Ultrathin Planar Acoustic Metasurfaces
,”
Appl. Phys. A
,
120
(
4
), pp.
1283
1289
.10.1007/s00339-015-9379-6
99.
Lan
,
J.
,
Zhang
,
X. W.
,
Liu
,
X. Z.
, and
Li
,
Y. F.
,
2018
, “
Wavefront Manipulation Based on Transmissive Acoustic Metasurface With Membrane-Type Hybrid Structure
,”
Sci. Rep.
,
8
(
1
), p.
14171
.10.1038/s41598-018-32547-3
100.
Shen
,
C.
, and
Cummer
,
S. A.
,
2018
, “
Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces
,”
Phys. Rev. Appl.
,
9
, p.
054009
.10.1103/PhysRevApplied.9.054009
101.
Liu
,
B. Y.
,
Zhao
,
W. Y.
, and
Jiang
,
Y. Y.
,
2016
, “
Full-Angle Negative Reflection Realized by a Gradient Acoustic Metasurface
,”
AIP Adv.
,
6
(
11
), p.
115110
.10.1063/1.4967430
102.
Ding
,
C. L.
,
Chen
,
H. J.
,
Zhai
,
S. L.
,
Liu
,
S.
, and
Zhao
,
X. P.
,
2015
, “
The Anomalous Manipulation of Acoustic Waves Based on Planar Metasurface With Split Hollow Sphere
,”
J. Phys. D Appl. Phys.
,
48
(
4
), p.
045303
.10.1088/0022-3727/48/4/045303
103.
Zhu
,
Y.
,
Fan
,
X.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Jing
,
Y.
,
2017
, “
Ultrathin Acoustic Metasurface-Based Schroeder Diffuser
,”
Phys. Rev. X
,
7
(
2
), p.
021034
.10.1103/PhysRevX.7.021034
104.
Wang
,
X. P.
,
Wan
,
L. L.
,
Chen
,
T. N.
,
Song
,
A. L.
, and
Du
,
X. W.
,
2016
, “
Broadband Reflected Wavefronts Manipulation Using Structured Phase Gradient Metasurfaces
,”
AIP Adv.
,
6
(
6
), p.
065320
.10.1063/1.4954750
105.
Dubois
,
M.
,
Shi
,
C. Z.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2017
, “
A Thin and Conformal Metasurface for Illusion Acoustics of Rapidly Changing Profiles
,”
Appl. Phys. Lett.
,
110
(
15
), p.
151902
.10.1063/1.4979978
106.
Zhao
,
Y. P.
,
Liu
,
J. J.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2020
, “
An Ultrathin Planar Acoustic Metasurface Diffuser With Narrowband Uniform Reflection
,”
AIP Adv.
,
10
(
8
), p.
085122
.10.1063/5.0011243
107.
Faure
,
C.
,
Richoux
,
O.
,
Félix
,
S.
, and
Pagneux
,
V.
,
2016
, “
Experiments on Metasurface Carpet Cloaking for Audible Acoustics
,”
Appl. Phys. Lett.
,
108
(
6
), p.
064103
.10.1063/1.4941810
108.
Zhu
,
Y. F.
, and
Assouar
,
B.
,
2019
, “
Multifunctional Acoustic Metasurface Based on an Array of Helmholtz Resonators
,”
Phys. Rev. B
,
99
(
17
), p.
174109
.10.1103/PhysRevB.99.174109
109.
Wen
,
J. K.
,
Zhu
,
Y. F.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2020
, “
Wavelength-Dependent Multi-Functional Wavefront Manipulation for Reflected Acoustic Waves
,”
Appl. Phys. Express
,
13
(
9
), p.
094003
.10.35848/1882-0786/abb062
110.
Li
,
Y.
,
Ren
,
Z. W.
,
Yuan
,
X. J.
,
Chen
,
M. J.
,
Cao
,
W. K.
,
Cheng
,
Q.
,
Jin
,
Z. K.
,
Cheng
,
X. D.
,
Zhang
,
C.
,
Yang
,
J.
, and
Fang
,
D. N.
,
2019
, “
Reflection Phase Dispersion Editing Generates Wideband Invisible Acoustic Huygens's Metasurface
,”
J. Acoust. Soc. Am.
,
146
(
1
), pp.
166
171
.10.1121/1.5116012
111.
Zhou
,
H. T.
,
Fan
,
S. W.
,
Li
,
X. S.
,
Fu
,
W. X.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
,
2020
, “
Tunable Arc-Shaped Acoustic Metasurface Carpet Cloak Smart
,”
Mater. Struct.
,
29
(
6
), p.
065016
.10.1088/1361-665X/ab87e4
112.
Zhai
,
S. L.
,
Ding
,
C. L.
,
Chen
,
H. J.
,
Shen
,
F. L.
,
Luo
,
C. R.
, and
Zhao
,
X. P.
,
2016
, “
Anomalous Manipulation of Acoustic Wavefront With an Ultrathin Planar Metasurface
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041019
.10.1115/1.4033258
113.
Chen
,
X.
,
Liu
,
P.
,
Hou
,
Z. W.
, and
Pei
,
Y. M.
,
2017
, “
Implementation of Acoustic Demultiplexing With Membrane-Type Metasurface in Low Frequency Range
,”
Appl. Phys. Lett.
,
110
(
16
), p.
161909
.10.1063/1.4981898
114.
Chen
,
H. J.
,
2018
, “
Anomalous Reflection of Acoustic Waves in Air With Metasurfaces at Low Frequency
,”
Adv. Cond. Matter Phys.
,
2018
, pp.
1
7
.10.1155/2018/5452071
115.
Ma
,
F. Y.
,
Huang
,
M.
,
Xu
,
Y. C.
, and
Wu
,
J. H.
,
2018
, “
Bilayer Synergetic Coupling Double Negative Acoustic Metasurface and Cloak
,”
Sci. Rep.
,
8
(
1
), p.
5906
.10.1038/s41598-018-24231-3
116.
Ma
,
F. Y.
,
Xu
,
Y. C.
, and
Wu
,
J. H.
,
2019
, “
Pure Solid Acoustic Metasurface With Coating Adapter
,”
Appl. Phys. Express
,
12
(
5
), p.
054003
.10.7567/1882-0786/ab130c
117.
Ma
,
F. Y.
,
Xu
,
Y. C.
, and
Wu
,
J. H.
,
2019
, “
Shell-Type Acoustic Metasurface and Arc-Shape Carpet Cloak
,”
Sci. Rep.
,
9
(
1
), p.
8076
.10.1038/s41598-019-44619-z
118.
Mei
,
J.
, and
Wu
,
Y.
,
2014
, “
Controllable Transmission and Total Reflection Through an Impedance-Matched Acoustic Metasurface
,”
New J. Phys.
,
16
(
12
), p.
123007
.10.1088/1367-2630/16/12/123007
119.
Su
,
Y. C.
, and
Ko
,
L. H.
,
2022
, “
Acoustic Wave Splitting and Wave Trapping Designs
,”
ASME J. Vib. Acoust.
,
144
(
5
), p.
034502
.10.1115/1.4053713
120.
Wang
,
X. P.
,
Wan
,
L. L.
,
Chen
,
T. N.
,
Song
,
A. L.
, and
Wang
,
F.
,
2016
, “
Broadband Unidirectional Acoustic Cloak Based on Phase Gradient Metasurfaces With Two Flat Acoustic Lenses
,”
J. Appl. Phys.
,
120
(
1
), p.
014902
.10.1063/1.4954326
121.
Wang
,
X. P.
,
Wan
,
L. L.
,
Chen
,
T. N.
,
Liang
,
Q. X.
, and
Song
,
A. L.
,
2016
, “
Broadband Acoustic Diode by Using Two Structured Impedance-Matched Acoustic Metasurfaces
,”
Appl. Phys. Lett.
,
109
(
4
), p.
044102
.10.1063/1.4960019
122.
Song
,
X. P.
,
Chen
,
T. N.
,
Zhu
,
J.
,
He
,
Y. B.
, and
Zhang
,
J. Z.
,
2019
, “
A Switchable Sound Tunnel by Using an Acoustic Metasurface
,”
J. Theor. Comput. Acoust.
,
27
(
04
), p.
1950017
.10.1142/S2591728519500178
123.
Molerón
,
M.
,
Serra-Garcia
,
M.
, and
Daraio
,
C.
,
2016
, “
Visco-Thermal Effects in Acoustic Metamaterials: From Total Transmission to Total Reflection and High Absorption
,”
New. J. Phys.
,
18
(
3
), p.
033003
.10.1088/1367-2630/18/3/033003
124.
Jiang
,
X.
,
Li
,
Y.
, and
Zhang
,
L. K.
,
2017
, “
Thermoviscous Effects on Sound Transmission Through a Metasurface of Hybrid Resonances
,”
J. Acoust. Soc. Am.
,
141
(
4
), pp.
EL363
EL368
.10.1121/1.4979682
125.
Gerard
,
N. J.
,
Li
,
Y.
, and
Jing
,
Y.
,
2018
, “
Investigation of Acoustic Metasurfaces With Constituent Material Properties Considered
,”
J. Appl. Phys.
,
123
(
12
), p.
124905
.10.1063/1.5007863
126.
Gerard
,
N. J.
, and
Jing
,
Y.
,
2020
, “
Loss in Acoustic Metasurfaces: A Blessing in Disguise
,”
MRS Commun.
,
10
(
1
), pp.
32
41
.10.1557/mrc.2019.148
127.
Li
,
Y.
,
Shen
,
C.
,
Xie
,
Y.
,
Li
,
J.
,
Wang
,
W.
,
Cummer
,
S. A.
, and
Jing
,
Y.
,
2017
, “
Tunable Asymmetric Transmission Via Lossy Acoustic Metasurfaces
,”
Phys. Rev. Lett.
,
119
(
3
), p.
035501
.10.1103/PhysRevLett.119.035501
128.
Fan
,
S. W.
,
Zhu
,
Y.
,
Cao
,
L.
,
Wang
,
Y. F.
,
Chen
,
A. L.
,
Merkel
,
A.
,
Wang
,
Y. S.
, and
Assouar
,
B.
,
2020
, “
Broadband Tunable Lossy Metasurface With Decoupled Amplitude and Phase Modulations for Acoustic Holography
,”
Smart Mater. Struct.
,
29
(
10
), p.
105038
.10.1088/1361-665X/abaa98
129.
Li
,
P.
,
Chang
,
Y. F.
,
Du
,
Q. J.
,
Xu
,
Z. H.
,
Liu
,
M. Y.
, and
Peng
,
P.
,
2020
, “
Continuously Tunable Acoustic Metasurface With Rotatable Anisotropic Three-Component Resonators
,”
Appl. Phys. Express
,
13
(
2
), p.
025507
.10.35848/1882-0786/ab6f27
130.
Yang
,
X. Y.
,
Fei
,
C. L.
,
Li
,
D.
,
Li
,
Z. X.
,
Sun
,
X. H.
,
Hou
,
S.
,
Feng
,
W.
, and
Yang
,
Y. T.
,
2019
, “
Analysis of Dynamic High-Frequency Acoustic Field Control by Metasurfaces Lens
,”
AIP Adv.
,
9
(
11
), p.
115119
.10.1063/1.5124119
131.
Wu
,
X. X.
,
Xia
,
X. X.
,
Tian
,
J. X.
,
Liu
,
Z. Y.
, and
Wen
,
W. J.
,
2016
, “
Broadband Reflective Metasurface for Focusing Underwater Ultrasonic Waves With Linearly Tunable Focal Length
,”
Appl. Phys. Lett.
,
108
(
16
), p.
163502
.10.1063/1.4947437
132.
Cheng
,
B. Z.
,
Hou
,
H.
, and
Gao
,
N. S.
,
2018
, “
An Acoustic Metasurface With Simultaneous Phase Modulation and Energy Attenuation
,”
Mod. Phys. Lett. B
,
32
(
23
), p.
1850276
.10.1142/S0217984918502767
133.
Jin
,
Y. B.
,
Kumar
,
R.
,
Poncelet
,
O.
,
Mondain-Monval
,
O.
, and
Brunet
,
T.
,
2019
, “
Flat Acoustics With Soft Gradient-Index Metasurfaces
,”
Nat. Commun.
,
10
(
1
), p.
143
.10.1038/s41467-018-07990-5
134.
Zhou
,
H. T.
,
Fu
,
W. X.
,
Li
,
X. S.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
,
2022
, “
Loosely Coupled Reflective Impedance Metasurfaces: Precise Manipulation of Waterborne Sound by Top Ology Optimization
,”
Mech. Syst. Signal Process.
,
177
, p.
109228
.10.1016/j.ymssp.2022.109228
135.
Chen
,
Z.
,
Yan
,
F.
,
Negahban
,
M.
, and
Li
,
Z.
,
2020
, “
Resonator-Based Reflective Metasurface for Low-Frequency Underwater Acoustic Waves
,”
J. Appl. Phys.
,
128
(
5
), p.
055305
.10.1063/5.0006523
136.
Chen
,
Z.
,
Yan
,
F.
,
Negahban
,
M.
, and
Li
,
Z.
,
2021
, “
Extremely Thin Reflective Metasurface for Low-Frequency Underwater Acoustic Waves: Sharp Focusing, Self-Bending, and Carpet Cloaking
,”
J. Appl. Phys.
,
130
(
12
), p.
125304
.10.1063/5.0041092
137.
Zou
,
H. Z.
,
Li
,
P.
, and
Peng
,
P.
,
2020
, “
An Ultra-Thin Acoustic Metasurface With Multiply Resonant Units
,”
Phys. Lett. A
,
384
(
7
), p.
126151
.10.1016/j.physleta.2019.126151
138.
Xu
,
Z. H.
,
Li
,
P.
,
Liu
,
M. Y.
,
Du
,
Q. J.
,
Guo
,
Y. F.
, and
Peng
,
P.
,
2022
, “
An Ultrathin Acoustic Metasurface Composed of an Anisotropic Three Component Resonator
,”
Appl. Phys. Express
,
15
(
2
), p.
027004
.10.35848/1882-0786/ac4a0e
139.
Liu
,
M. Y.
,
Li
,
P.
,
Du
,
Q. J.
, and
Peng
,
P.
,
2019
, “
Reflected Wavefront Manipulation by Acoustic Metasurfaces With Anisotropic Local Resonant Units
,”
EPL
,
125
(
5
), p.
54004
.10.1209/0295-5075/125/54004
140.
Milton
,
G. W.
, and
Cherkaev
,
A. V.
,
1995
, “
Which Elasticity Tensors Are Realizable?
,”
ASME J. Eng. Mater. Technol.
,
117
(
4
), pp.
483
493
.10.1115/1.2804743
141.
Chen
,
Y.
,
Liu
,
X. N.
,
Xiang
,
P.
, and
Hu
,
G. K.
,
2016
, “
Pentamode Material for Underwater Acoustic Wave Control
,”
Adv. Mech.
,
46
(
1
), p.
201609
(in Chinese).10.6052/1000-0992-16-010
142.
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
,
Xu
,
Z.
, and
Liu
,
X. J.
,
2015
, “
Broadband Manipulation of Acoustic Wavefronts by Pentamode Metasurface
,”
Appl. Phys. Lett.
,
107
(
22
), p.
221906
.10.1063/1.4936762
143.
Chu
,
Y. Y.
,
Wang
,
Z. H.
, and
Xu
,
Z.
,
2020
, “
Broadband High-Efficiency Controllable Asymmetric Propagation by Pentamode Acoustic Metasurface
,”
Phys. Lett. A
,
384
(
11
), p.
126230
.10.1016/j.physleta.2019.126230
144.
Chen
,
Y.
, and
Hu
,
G. K.
,
2019
, “
Broadband and High-Transmission Metasurface for Converting Underwater Cylindrical Waves to Plane Waves
,”
Phys. Rev. Appl.
,
12
, p.
044046
.10.1103/PhysRevApplied.12.044046
145.
Cai
,
L.
,
Wen
,
J. H.
,
Yu
,
D. L.
,
Lu
,
Z. M.
,
Chen
,
X.
, and
Zhao
,
X.
,
2017
, “
Beam Steering of the Acoustic Metasurface Under a Subwavelength Periodic Modulation
,”
Appl. Phys. Lett.
,
111
(
20
), p.
201902
.10.1063/1.5001954
146.
Liu
,
Y.
,
Li
,
Y. F.
, and
Liu
,
X. Z.
,
2019
, “
Manipulation of Acoustic Wavefront by Transmissive Metasurface Based on Pentamode Metamaterials
,”
Chin. Phys. B
,
28
(
2
), p.
024301
.10.1088/1674-1056/28/2/024301
147.
Zhang
,
X. D.
,
Chen
,
H.
,
Zhao
,
Z. G.
,
Zhao
,
A. G.
,
Cai
,
X.
, and
Wang
,
L.
,
2020
, “
Experimental Demonstration of a Broadband Waterborne Acoustic Metasurface for Shifting Reflected Waves
,”
J. Appl. Phys.
,
127
(
17
), p.
174902
.10.1063/1.5139008
148.
Sun
,
Z. Y.
,
Shi
,
Y.
,
Sun
,
X. C.
,
Jia
,
H.
,
Jin
,
Z. K.
,
Deng
,
K.
, and
Yang
,
J.
,
2021
, “
Underwater Acoustic Multiplexing Communication by Pentamode Metasurface
,”
J Phys. D Appl. Phys.
,
54
(
20
), p.
205303
.10.1088/1361-6463/abe43e
149.
Shen
,
X. H.
,
Sun
,
C. T.
,
Barnhart
,
M. V.
, and
Huang
,
G. L.
,
2018
, “
Elastic Wave Manipulation by Using a Phase-Controlling Meta-Layer
,”
J. Appl. Phys.
,
123
(
9
), p.
091708
.10.1063/1.4996018
150.
Yuan
,
S. M.
,
Chen
,
A. L.
,
Cao
,
L. Y.
,
Zhang
,
H. W.
,
Fan
,
S. W.
,
Assouar
,
M. B.
, and
Wang
,
Y. S.
,
2020
, “
Tunable Multifunctional Fish-Bone Elastic Metasurface for Wavefront Manipulation of Transmitted in-Plane Waves
,”
J. Appl. Phys.
,
128
(
22
), p.
224502
.10.1063/5.0029045
151.
Su
,
X. S.
, and
Norris
,
A. N.
,
2016
, “
Focusing, Refraction, and Asymmetric Transmission of Elastic Waves in Solid Metamaterials With Aligned Parallel Gaps
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3386
3394
.10.1121/1.4950770
152.
Su
,
X. S.
,
Lu
,
Z. C.
, and
Norris
,
A. N.
,
2018
, “
Elastic Metasurface for Splitting SV- and P-Waves in Elastic Solids
,”
J. Appl. Phys.
,
123
(
9
), p.
091701
.10.1063/1.5007731
153.
Liu
,
Y. L.
,
Li
,
H. B.
,
Zhang
,
J.
,
Liu
,
X. Y.
,
Wu
,
L. K.
,
Ning
,
H. M.
, and
Hu
,
N.
,
2020
, “
Design of Elastic Metasurfaces for Controlling Shear Vertical Waves Using Uniaxial Scaling Transformation Method
,”
Int. J. Mech. Sci.
,
169
, p.
105335
.10.1016/j.ijmecsci.2019.105335
154.
Zhang
,
J.
,
Su
,
X. S.
,
Pennec
,
Y.
,
Jing
,
Y.
,
Liu
,
X. F.
, and
Hu
,
N.
,
2018
, “
Wavefront Steering of Elastic Shear Vertical Waves in Solids Via a Composite-Plate-Based Metasurface
,”
J. Appl. Phys.
,
124
(
16
), p.
164505
.10.1063/1.5049515
155.
Zeng
,
L. H.
,
Zhang
,
J.
,
Liu
,
Y. L.
,
Zhao
,
Y. X.
, and
Hu
,
N.
,
2019
, “
Asymmetric Transmission of Elastic Shear Vertical Waves in Solids
,”
Ultrasonics
,
96
, pp.
34
39
.10.1016/j.ultras.2019.03.016
156.
Su
,
Y. C.
,
Chen
,
T. Y.
,
Ko
,
L. H.
, and
Lu
,
M. H.
,
2020
, “
Design of Metasurfaces to Enable Shear Horizontal Wave Trapping
,”
J. Appl. Phys.
,
128
(
17
), p.
175107
.10.1063/5.0018872
157.
Qiu
,
H.
,
Chen
,
M. T.
,
Huan
,
Q.
, and
Li
,
F. X.
,
2019
, “
Steering and Focusing of Fundamental Shear Horizontal Guided Waves in Plates by Using Multiple-Strip Metasurfaces
,”
EPL
,
127
(
4
), p.
46004
.10.1209/0295-5075/127/46004
158.
Qiu
,
H.
, and
Li
,
F. X.
,
2020
, “
Manipulation of Shear Horizontal Guided Wave With Arbitrary Wave Fronts by Using Metasurfaces
,”
J. Phys. D Appl. Phys.
,
53
(
28
), p.
285301
.10.1088/1361-6463/ab850d
159.
Zhang
,
J.
,
Su
,
X. S.
,
Liu
,
Y. L.
,
Zhao
,
Y. X.
,
Jing
,
Y.
, and
Hu
,
N.
,
2019
, “
Metasurface Constituted by Thin Composite Beams to Steer Flexural Waves in Thin Plates
,”
Int. J. Solids Struct.
,
162
, pp.
14
20
.10.1016/j.ijsolstr.2018.11.025
160.
Tian
,
Z. H.
, and
Yu
,
L. Y.
,
2019
, “
Elastic Phased Diffraction Gratings for Manipulation of Ultrasonic Guided Waves in Solids
,”
Phys. Rev. Appl.
,
11
, p.
024052
.10.1103/PhysRevApplied.11.024052
161.
Jiang
,
Y. Q.
,
Liu
,
Y. L.
,
Kou
,
M. Q.
,
Li
,
H. B.
,
Wu
,
X. P.
,
Zeng
,
X. J.
,
Bi
,
X. Y.
,
Zhang
,
H.
, and
Hu
,
N.
,
2022
, “
Multi-Parameter Independent Manipulation for Flexural Wave by Notched Metasurface
,”
Int. J. Mech. Sci.
,
214
, p.
106928
.10.1016/j.ijmecsci.2021.106928
162.
Cao
,
X.
,
Jia
,
C. L.
,
Miao
,
H. C.
,
Kang
,
G. Z.
, and
Zhang
,
C.
,
2021
, “
Excitation and Manipulation of Guided Shear-Horizontal Plane Wave Using Elastic Metasurfaces
,”
Smart Mater. Struct.
,
30
(
5
), p.
055013
.10.1088/1361-665X/abf23e
163.
Liu
,
Y. Q.
,
Liang
,
Z. X.
,
Liu
,
F.
,
Diba
,
O.
,
Lamb
,
A.
, and
Li
,
J.
,
2017
, “
Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces
,”
Phys. Rev. Lett.
,
119
(
3
), p.
034301
.10.1103/PhysRevLett.119.034301
164.
Li
,
B.
,
Hu
,
Y. B.
,
Chen
,
J. L.
,
Su
,
G. Y.
,
Liu
,
Y. Q.
,
Zhao
,
M. Y.
, and
Li
,
Z.
,
2020
, “
Efficient Asymmetric Transmission of Elastic Waves in Thin Plates With Lossless Metasurfaces
,”
Phys. Rev. Appl.
,
14
, p.
054029
.10.1103/PhysRevApplied.14.054029
165.
Zhang
,
J.
,
Zhang
,
X. B.
,
Xu
,
F. L.
,
Ding
,
X. Y.
,
Deng
,
M. X.
,
Hu
,
N.
, and
Zhang
,
C.
,
2020
, “
Vibration Control of Flexural Waves in Thin Plates by 3D-Printed Metasurfaces
,”
J. Sound Vib.
,
481
, p.
115440
.10.1016/j.jsv.2020.115440
166.
Jiang
,
M.
,
Zhou
,
H. T.
,
Li
,
X. S.
,
Fu
,
W. X.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
,
2022
, “
Extreme Transmission of Elastic Metasurface for Deep Subwavelength Focusing
,”
Acta Mech. Sin.
,
38
, p.
121497
.10.1007/s10409-021-09073-z
167.
Lee
,
H.
,
Lee
,
J. K.
,
Seung
,
H. M.
, and
Kim
,
Y. Y.
,
2018
, “
Mass-Stiffness Substructuring of an Elastic Metasurface for Full Transmission Beam Steering
,”
J. Mech. Phys. Solids
,
112
, pp.
577
593
.10.1016/j.jmps.2017.11.025
168.
Lee
,
S. W.
,
Seung
,
H. M.
,
Choi
,
W.
,
Kim
,
M.
, and
Oh
,
J. H.
,
2020
, “
Broad-Angle Refractive Transmodal Elastic Metasurface
,”
Appl. Phys. Lett.
,
117
(
21
), p.
213502
.10.1063/5.0026928
169.
Yilmaz
,
C.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
,
2007
, “
Phononic Band Gaps Induced by Inertial Amplification in Periodic Media
,”
Phys. Rev. B
,
76
(
5
), p.
054309
.10.1103/PhysRevB.76.054309
170.
Van Damme
,
B.
,
Hannema
,
G.
,
Sales Souza
,
L.
,
Weisse
,
B.
,
Tallarico
,
D.
, and
Bergamini
,
A.
,
2021
, “
Inherent Non-Linear Damping in Resonators With Inertia Amplification
,”
Appl. Phys. Lett.
,
119
(
6
), p.
061901
.10.1063/5.0061826
171.
Lee
,
S. W.
, and
Oh
,
J. H.
,
2020
, “
Single-Layer Elastic Metasurface With Double Negativity for Anomalous Refraction
,”
J. Phys. D Appl. Phys.
,
53
(
26
), p.
265301
.10.1088/1361-6463/ab7fd6
172.
Yang
,
X. W.
,
Kweun
,
M.
, and
Kim
,
Y. Y.
,
2019
, “
Monolayer Metamaterial for Full Mode-Converting Transmission of Elastic Waves
,”
Appl. Phys. Lett.
,
115
(
7
), p.
071901
.10.1063/1.5109758
173.
Zheng
,
M. Y.
,
Park
,
C.
, Il
,
Liu
,
X. N.
,
Zhu
,
R.
,
Hu
,
G. K.
, and
Kim
,
Y. Y.
,
2020
, “
Non-Resonant Metasurface for Broadband Elastic Wave Mode Splitting
,”
Appl. Phys. Lett.
,
116
(
17
), p.
171903
.10.1063/5.0005408
174.
Zhu
,
H. F.
, and
Semperlotti
,
F.
,
2016
, “
Anomalous Refraction of Acoustic Guided Waves in Solids With Geometrically Tapered Metasurfaces
,”
Phys. Rev. Lett.
,
117
(
3
), p.
034302
.10.1103/PhysRevLett.117.034302
175.
Zhu
,
H. F.
,
Walsh
,
T. F.
, and
Semperlotti
,
F.
,
2018
, “
Total Internal Reflection Elastic Metasurfaces-Design and Application to Structural Vibration Isolation
,”
Appl. Phys. Lett.
,
113
(
22
), p.
221903
.10.1063/1.5052538
176.
Lin
,
Z. B.
,
Xu
,
W. K.
,
Xuan
,
C. M.
,
Qi
,
W. C.
, and
Wang
,
W.
,
2021
, “
Modular Elastic Metasurfaces With Mass Oscillators for Transmitted Flexural Wave Manipulation
,”
J. Phys. D Appl. Phys.
,
54
(
25
), p.
255303
.10.1088/1361-6463/abee47
177.
Jin
,
Y. B.
,
Bonello
,
B.
,
Moiseyenko
,
R. P.
,
Pennec
,
Y.
,
Boyko
,
O.
, and
Djafari-Rouhani
,
B.
,
2017
, “
Pillar-Type Acoustic Metasurface
,”
Phys. Rev. B
,
96
(
10
), p.
104311
.10.1103/PhysRevB.96.104311
178.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
, and
Assouar
,
B.
,
2018
, “
Deflecting Flexural Wave With High Transmission by Using Pillared Elastic Metasurface
,”
Smart Mater. Struct.
,
27
(
7
), p.
075051
.10.1088/1361-665X/aaca51
179.
Cao
,
L. Y.
,
Xu
,
Y. L.
,
Assouar
,
B.
, and
Yang
,
Z. C.
,
2018
, “
Asymmetric Flexural Wave Transmission Based on Dual-Layer Elastic Gradient Metasurfaces
,”
Appl. Phys. Lett.
,
113
(
18
), p.
183506
.10.1063/1.5050671
180.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
,
Chen
,
Z. L.
,
Zhu
,
Y. F.
,
Fan
,
S. W.
,
Donda
,
K.
,
Vincent
,
B.
, and
Assouar
,
B.
,
2021
, “
Pillared Elastic Metasurface With Constructive Interference for Flexural Wave Manipulation
,”
Mech. Syst. Signal Process.
,
146
, p.
107035
.10.1016/j.ymssp.2020.107035
181.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
,
Fan
,
S. W.
,
Zhu
,
Y. F.
,
Chen
,
Z. L.
,
Vincent
,
B.
, and
Assouar
,
B.
,
2020
, “
Disordered Elastic Metasurfaces
,”
Phys. Rev. Appl.
,
13
, p.
014054
.10.1103/PhysRevApplied.13.014054
182.
Jin
,
Y. B.
,
Wang
,
W.
,
Khelif
,
A.
, and
Djafari-Rouhani
,
B.
,
2021
, “
Elastic Metasurfaces for Deep and Robust Subwavelength Focusing and Imaging
,”
Phys. Rev. Appl.
,
15
, p.
024005
.10.1103/PhysRevApplied.15.024005
183.
Wang
,
W.
,
Iglesias
,
J.
,
Jin
,
Y. B.
,
Djafari-Rouhani
,
B.
, and
Khelif
,
A.
,
2021
, “
Experimental Realization of a Pillared Metasurface for Flexural Wave Focusing
,”
APL Mater.
,
9
(
5
), p.
051125
.10.1063/5.0052278
184.
Xu
,
W. K.
,
Zhang
,
M.
,
Lin
,
Z. B.
,
Liu
,
C. L.
,
Qi
,
W. C.
, and
Wang
,
W.
,
2019
, “
Anomalous Refraction Manipulation of Lamb Waves Using Single-Groove Metasurfaces
,”
Phys. Scr.
,
94
(
10
), p.
105807
.10.1088/1402-4896/ab2b01
185.
Xu
,
W. K.
,
Zhang
,
M.
,
Ning
,
J. Y.
,
Wang
,
W.
, and
Yang
,
T. Z.
,
2019
, “
Anomalous Refraction Control of Mode-Converted Elastic Wave Using Compact Notch-Structured Metasurface
,”
Mater. Res. Express
,
6
(
6
), p.
065802
.10.1088/2053-1591/ab0dc8
186.
Lin
,
Z. B.
,
Wang
,
W.
,
Xu
,
W. K.
, and
Yang
,
T. Z.
,
2022
, “
Topology Optimization of Single-Groove Acoustic Metasurfaces Using Genetic Algorithms
,”
Arch. Appl. Mech.
,
92
(
3
), pp.
961
969
.10.1007/s00419-021-02084-z
187.
Kim
,
M. S.
,
Lee
,
W. R.
,
Kim
,
Y. Y.
, and
Oh
,
J. H.
,
2018
, “
Transmodal Elastic Metasurface for Broad Angle Total Mode Conversion
,”
Appl. Phys. Lett.
,
112
(
24
), p.
241905
.10.1063/1.5032157
188.
Kim
,
M. S.
,
Lee
,
W. R.
,
Park
,
C.
, Il
, and
Oh
,
J. H.
,
2020
, “
Elastic Wave Energy Entrapment for Reflectionless Metasurface
,”
Phys. Rev. Appl.
,
13
, p.
054036
.10.1103/PhysRevApplied.13.054036
189.
Kim
,
S. Y.
,
Lee
,
W.
,
Lee
,
J. S.
, and
Kim
,
Y. Y.
,
2021
, “
Longitudinal Wave Steering Using Beam-Type Elastic Metagratings
,”
Mech. Syst. Signal Process.
,
156
, p.
107688
.10.1016/j.ymssp.2021.107688
190.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
,
Fan
,
S. W.
,
Zhu
,
Y. F.
,
Chen
,
Z. L.
,
Li
,
Y.
, and
Assouar
,
B.
,
2020
, “
Flexural Wave Absorption by Lossy Gradient Elastic Metasurface
,”
J. Mech. Phys. Solids
,
143
, p.
104052
.10.1016/j.jmps.2020.104052
191.
Ruan
,
Y. D.
,
Liang
,
X.
, and
Hu
,
C. J.
,
2020
, “
Retroreflection of Flexural Wave by Using Elastic Metasurface
,”
J. Appl. Phys.
,
128
(
4
), p.
045116
.10.1063/5.0005928
192.
Zhu
,
Y.
,
Merkel
,
A.
,
Donda
,
K.
,
Fan
,
S.
,
Cao
,
L.
, and
Assouar
,
B.
,
2021
, “
Nonlocal Acoustic Metasurface for Ultrabroadband Sound Absorption
,”
Phys. Rev. B
,
103
(
6
), p.
064102
.10.1103/PhysRevB.103.064102
193.
Zhu
,
H. F.
,
Patnaik
,
S.
,
Walsh
,
T. F.
,
Jared
,
B. H.
, and
Semperlotti
,
F.
,
2020
, “
Nonlocal Elastic Metasurfaces: Enabling Broadband Wave Control Via Intentional Nonlocality
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
42
), pp.
26099
26108
.10.1073/pnas.2004753117
194.
Zhu
,
H. F.
,
Walsh
,
T. F.
,
Jared
,
B. H.
, and
Semperlotti
,
F.
,
2022
, “
On the Broadband Vibration Isolation Performance of Nonlocal Total-Internal-Reflection Metasurfaces
,”
J. Sound Vib.
,
522
, p.
116670
.10.1016/j.jsv.2021.116670
195.
Fan
,
L. J.
, and
Mei
,
J.
,
2020
, “
Metagratings for Waterborne Sound: Various Functionalities Enabled by an Efficient Inverse-Design Approach
,”
Phys. Rev. Appl.
,
14
, p.
044003
.10.1103/PhysRevApplied.14.044003
196.
Schwan
,
L.
,
Umnova
,
O.
,
Boutin
,
C.
, and
Groby
,
J. P.
,
2018
, “
Nonlocal Boundary Conditions for Corrugated Acoustic Metasurface With Strong Near-Field Interactions
,”
J. Appl. Phys.
,
123
(
9
), p.
091712
.10.1063/1.5011385
197.
Quan
,
L.
,
Ra)di
,
Y.
,
Sounas
,
D. L.
, and
Alù
,
A.
,
2018
, “
Maximum Willis Coupling in Acoustic Scatterers
,”
Phys. Rev. Lett.
,
120
(
25
), p.
254301
.10.1103/PhysRevLett.120.254301
198.
Esfahlani
,
H.
,
Mazor
,
Y.
, and
Alù
,
A.
,
2021
, “
Homogenization and Design of Acoustic Willis Metasurfaces
,”
Phys. Rev. B
,
103
(
5
), p.
054306
.10.1103/PhysRevB.103.054306
199.
Popa
,
B. I.
,
Zhai
,
Y. X.
, and
Kwon
,
H. S.
,
2018
, “
Broadband Sound Barriers With Bianisotropic Metasurfaces
,”
Nat. Commun.
,
9
(
1
), p.
5299
.10.1038/s41467-018-07809-3
200.
Tong
,
S. S.
,
Ren
,
C. Y.
, and
Tang
,
W. P.
,
2021
, “
Asymmetric Sandwich-Like Elements for Bianisotropic Acoustic Metasurfaces
,”
J. Phys. D Appl. Phys.
,
54
(
48
), p.
485101
.10.1088/1361-6463/ac2113
201.
Koo
,
S.
,
Cho
,
C.
,
Jeong
,
J. H.
, and
Park
,
N.
,
2016
, “
Acoustic Omni Meta-Atom for Decoupled Access to All Octants of a Wave Parameter Space
,”
Nat. Commun.
,
7
, p.
13012
.10.1038/ncomms13012
202.
Zhou
,
H. T.
,
Fu
,
W. X.
,
Wang
,
Y. F.
,
Wang
,
Y. S.
,
Laude
,
V.
, and
Zhang
,
C.
,
2021
, “
Ultra-Broadband Passive Acoustic Metasurface for Wide-Angle Carpet Cloaking
,”
Mater. Des.
,
199
, p.
109414
.10.1016/j.matdes.2020.109414
203.
Noguchi
,
Y.
, and
Yamada
,
T.
,
2021
, “
Level Set-Based Topology Optimization for Graded Acoustic Metasurfaces Using Two-Scale Homogenization
,”
Finite Elem. Anal. Des.
,
196
, p.
103606
.10.1016/j.finel.2021.103606
204.
Dong
,
H. W.
,
Shen
,
C.
,
Zhao
,
S. D.
,
Qiu
,
W. B.
,
Zhou
,
J.
,
Ch
,
Z.
,
Zheng
,
H. R.
,
Cummer
,
S. A.
,
Wang
,
Y. S.
, and
Cheng
,
L.
,
2022
, “
Achromatic Metasurfaces With Inversely Customized Dispersion for Ultra-Broadband Acoustic Beam Engineering
,”
Natl. Sci. Rev.
, epub.10.1093/nsr/nwac030
205.
Ahn
,
B.
,
Lee
,
H.
,
Lee
,
J. S.
, and
Kim
,
Y. Y.
,
2019
, “
Topology Optimization of Metasurfaces for Anomalous Reflection of Longitudinal Elastic Waves
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112582
.10.1016/j.cma.2019.112582
206.
Rong
,
J. J.
, and
Ye
,
W. J.
,
2020
, “
Multifunctional Elastic Metasurface Design With Topology Optimization
,”
Acta Mater.
,
185
, pp.
382
399
.10.1016/j.actamat.2019.12.017
207.
Rong
,
J. J.
,
Ye
,
W. J.
,
Zhang
,
S. Y.
, and
Liu
,
Y. J.
,
2020
, “
Frequency-Coded Passive Multifunctional Elastic Metasurfaces
,”
Adv. Funct. Mater.
,
30
(
50
), p.
2005285
.10.1002/adfm.202005285
208.
Noguchi
,
Y.
,
Yamada
,
T.
,
Otomori
,
M.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2015
, “
An Acoustic Metasurface Design for Wave Motion Conversion of Longitudinal Waves to Transverse Waves Using Topology Optimization
,”
Appl. Phys. Lett.
,
107
(
22
), p.
221909
.10.1063/1.4936997
209.
Miyata
,
K.
,
Noguchi
,
Y.
,
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2018
, “
Optimum Design of a Multi-Functional Acoustic Metasurface Using Topology Optimization Based on Zwicker)s Loudness Model
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
116
137
.10.1016/j.cma.2017.11.017
210.
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2017
, “
Acoustic Holography Based on Composite Metasurface With Decoupled Modulation of Phase and Amplitude
,”
Appl. Phys. Lett.
,
110
(
19
), p.
191901
.10.1063/1.4983282
211.
Zhang
,
H. K.
,
Zhang
,
W. X.
,
Liao
,
Y. H.
,
Zhou
,
X. M.
,
Li
,
J. F.
,
Hu
,
G. K.
, and
Zhang
,
X. D.
,
2020
, “
Creation of Acoustic Vortex Knots
,”
Nat. Commun.
,
11
(
1
), p.
3956
.10.1038/s41467-020-17744-x
212.
Zhu
,
Y. F.
,
Gerard
,
N. J.
,
Xia
,
X. X.
,
Stevenson
,
G. C.
,
Cao
,
L. Y.
,
Fan
,
S. W.
,
Spadaccini
,
C. M.
,
Jing
,
Y.
, and
Assouar
,
B.
,
2021
, “
Systematic Design and Experimental Demonstration of Transmission-Type Multiplexed Acoustic Meta-Holograms
,”
Adv. Funct. Mater.
,
31
(
27
), p.
2101947
.10.1002/adfm.202101947
213.
Liu, H. L., Yang, Z., Wang, W., Xuan, C. M., and Xu, W. K., 2022, “Design of Elastic Wave Metasurfaces Based on Lattice Truss Material,”
Arch. Appl. Mech.
, epub.10.1007/s00419-022-02166-6
214.
Yan
,
P. Y.
,
Zhu
,
X. F.
,
Chen
,
D.
, and
Wu
,
D. J.
,
2021
, “
Perfect Multiple Splitting With Arbitrary Power Distribution by Acoustic Metasurfaces
,”
Europhys. Lett.
,
134
(
4
), p.
48003
.10.1209/0295-5075/134/48003
215.
Chen
,
A. L.
,
Wang
,
X. M.
, and
Wang
,
Y. S.
,
2021
, “
Tunable Control and Functional Switch of Transmitted Acoustic Waves by an Arch-Shaped Metasurface
,”
Chin. J. Theor. Appl. Mech.
,
53
(
3
), pp.
789
801
(in Chinese).10.6052/0459-1879-20-456
216.
Ju
,
F. F.
,
Xiong
,
W.
,
Liu
,
C.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2019
, “
Acoustic Accelerating Beam Based on a Curved Metasurface
,”
Appl. Phys. Lett.
,
114
(
11
), p.
113507
.10.1063/1.5087544
217.
He
,
J. J.
,
Jiang
,
X.
,
Ta
,
D. A.
, and
Wang
,
W. Q.
,
2020
, “
Experimental Demonstration of Underwater Ultrasound Cloaking Based on Metagrating
,”
Appl. Phys. Lett.
,
117
(
9
), p.
091901
.10.1063/5.0021002
218.
Lawrence
,
A. J.
,
Goldsberry
,
B. M.
,
Wallen
,
S. P.
, and
Haberman
,
M. R.
,
2020
, “
Numerical Study of Acoustic Focusing Using a Bianisotropic Acoustic Lens
,”
J. Acoust. Soc. Am.
,
148
(
4
), pp.
EL365
EL370
.10.1121/10.0002137
219.
Liang
,
D. L.
,
Hu
,
G. R.
,
Ding
,
N.
,
Ma
,
Q. Y.
,
Guo
,
G. P.
,
Li
,
Y. Z.
,
Tu
,
J.
, and
Zhang
,
D.
,
2022
, “
Quasi-Bessel Acoustic-Vortex Beams Constructed by the Line-Focused Phase Modulation for a Ring-Array of Sectorial Planar Transducers
,”
IEEE Trans. Ultrason. Ferr.
,
69
(
1
), pp.
377
385
.10.1109/TUFFC.2021.3120285
220.
Chen
,
J.
,
Rao
,
J.
,
Lisevych
,
D.
, and
Fan
,
Z.
,
2019
, “
Broadband Ultrasonic Focusing in Water With an Ultra-Compact Metasurface Lens
,”
Appl. Phys. Lett.
,
114
(
10
), p.
104101
.10.1063/1.5090956
221.
Jiang
,
X.
,
He
,
J. J.
,
Zhang
,
C. X.
,
Zhao
,
H. L.
,
Wang
,
W. Q.
,
Ta
,
D. A.
, and
Qiu
,
C. W.
,
2022
, “
Three-Dimensional Ultrasound Subwavelength Arbitrary Focusing With Broadband Sparse Metalens
,”
Sci. China-Phys. Mech. Astron.
,
65
(
2
), p.
224311
.10.1007/s11433-021-1784-3
222.
Wang
,
Y. H.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2019
, “
Modulation of Acoustic Waves by a Broadband Metagrating
,”
Sci. Rep.
,
9
(
1
), p.
7271
.10.1038/s41598-019-43850-y
223.
Siviloglou
,
G. A.
, and
Christodoulides
,
D. N.
,
2007
, “
Accelerating Finite Energy Airy Beams
,”
Opt. Lett.
,
32
(
8
), pp.
979
981
.10.1364/OL.32.000979
224.
Zhang
,
P.
,
Li
,
T. C.
,
Zhu
,
J.
,
Zhu
,
X. F.
,
Yang
,
S.
,
Wang
,
Y.
,
Yin
,
X. B.
, and
Zhang
,
X.
,
2014
, “
Generation of Acoustic Self-Bending and Bottle Beams by Phase Engineering
,”
Nat. Commun.
,
5
, p.
4316
.10.1038/ncomms5316
225.
Lin
,
Z.
,
Guo
,
X. S.
,
Tu
,
J.
,
Ma
,
Q. Y.
,
Wu
,
J. R.
, and
Zhang
,
D.
,
2015
, “
Acoustic Non-Diffracting Airy Beam
,”
J. Appl. Phys.
,
117
(
10
), p.
104503
.10.1063/1.4914295
226.
Bar-Ziv
,
U.
,
Postan
,
A.
, and
Segev
,
M.
,
2015
, “
Observation of Shape-Preserving Accelerating Underwater Acoustic Beams
,”
Phys. Rev. B
,
92
(
10
), p.
100301(R)
.10.1103/PhysRevB.92.100301
227.
Zheng
,
Z.
,
Zhang
,
B. F.
,
Chen
,
H.
,
Ding
,
J. P.
, and
Wang
,
H. T.
,
2011
, “
Optical Trapping With Focused Airy Beams
,”
Appl. Opt.
,
50
(
1
), pp.
43
49
.10.1364/AO.50.000043
228.
Zhao
,
J. Y.
,
Chremmos
,
I. D.
,
Song
,
D. H.
,
Christodoulides
,
D. N.
,
Efremidis
,
N. K.
, and
Chen
,
Z. G.
,
2015
, “
Curved Singular Beams for Three-Dimensional Particle Manipulation
,”
Sci. Rep.
,
5
, p.
12086
.10.1038/srep12086
229.
Courtney
,
C. R. P.
,
Demore
,
C. E. M.
,
Wu
,
H. X.
,
Grinenko
,
A.
,
Wilcox
,
P. D.
,
Cochran
,
S.
, and
Drinkwater
,
B. W.
,
2014
, “
Independent Trapping and Manipulation of Microparticles Using Dexterous Acoustic Tweezers
,”
Appl. Phys. Lett.
,
104
(
15
), p.
154103
.10.1063/1.4870489
230.
Mitri
,
F. G.
,
2016
, “
Airy Acoustical–Sheet Spinner Tweezers
,”
J. Appl. Phys.
,
120
(
10
), p.
104901
.10.1063/1.4962397
231.
Liang
,
Y.
,
Hu
,
Y.
,
Song
,
D. H.
,
Lou
,
C. B.
,
Zhang
,
X. Z.
,
Chen
,
Z. G.
, and
Xu
,
J. J.
,
2015
, “
Image Signal Transmission With Airy Beams
,”
Opt. Lett.
,
40
(
23
), p.
5686
.10.1364/OL.40.005686
232.
Zhao
,
S. P.
,
Hu
,
Y. X.
,
Lu
,
J.
,
Qiu
,
X. J.
,
Cheng
,
J. C.
, and
Burnett
,
I.
,
2014
, “
Delivering Sound Energy Along an Arbitrary Convex Trajectory
,”
Sci. Rep.
,
4
, p.
6628
.10.1038/srep06628
233.
Tang
,
S.
,
Ren
,
B.
,
Feng
,
Y. X.
,
Song
,
J.
, and
Jiang
,
Y. Y.
,
2021
, “
The Generation of Acoustic Airy Beam With Selective Band Based on Binary Metasurfaces: Customized on Demand
,”
Appl. Phys. Lett.
,
119
(
7
), p.
071907
.10.1063/5.0060032
234.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2018
, “
Broadband Acoustic Focusing by Airy-Like Beams Based on Acoustic Metasurfaces
,”
J. Appl. Phys.
,
123
(
4
), p.
044503
.10.1063/1.5010705
235.
Gao
,
H.
,
Gu
,
Z. M.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yang
,
J.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2016
, “
Acoustic Focusing by Symmetrical Self-Bending Beams With Phase Modulations
,”
Appl. Phys. Lett.
,
108
(
7
), p.
073501
.10.1063/1.4941992
236.
Jiang
,
X.
,
Li
,
Y.
,
Ta
,
D.
, and
Wang
,
W. Q.
,
2020
, “
Ultrasonic Sharp Autofocusing With Acoustic Metasurface
,”
Phys. Rev. B
,
102
(
6
), p.
064308
.10.1103/PhysRevB.102.064308
237.
Xia
,
M.
,
Zhang
,
X.
,
Wu
,
F. G.
,
Wang
,
L. C.
,
Liu
,
Y. C.
,
Chen
,
Z. H.
, and
Yao
,
Y. W.
,
2020
, “
Broadband High-Quality Airy Beams Via Lossy Acoustic Gradient-Index Metasurfaces
,”
Solid State Commun.
,
308
, p.
113810
.10.1016/j.ssc.2019.113810
238.
Li
,
X. S.
,
Zhou
,
H. T.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
,
2021
, “
Modulation of Acoustic Self-Accelerating Beams With Tunable Curved Metasurfaces
,”
Appl. Phys. Lett.
,
118
(
2
), p.
023503
.10.1063/5.0035286
239.
Wang
,
T.
,
Ke
,
M. Z.
,
Li
,
W. P.
,
Yang
,
Q.
,
Qiu
,
C. Y.
, and
Liu
,
Z. Y.
,
2016
, “
Particle Manipulation With Acoustic Vortex Beam Induced by a Brass Plate With Spiral Shape Structure
,”
Appl. Phys. Lett.
,
109
(
12
), p.
123506
.10.1063/1.4963185
240.
Baudoin
,
M.
,
Gerbedoen
,
J. C.
,
Riaud
,
A.
,
Matar
,
O. B.
,
Smagin
,
N.
, and
Thomas
,
J. L.
,
2019
, “
Folding a Focalized Acoustical Vortex on a Flat Holographic Transducer: Miniaturized Selective Acoustical Tweezers
,”
Sci. Adv.
,
5
(
4
), p.
eaav1967
.10.1126/sciadv.aav1967
241.
Marzo
,
A.
, and
Drinkwater
,
B. W.
,
2019
, “
Holographic Acoustic Tweezers
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
1
), pp.
84
89
.10.1073/pnas.1813047115
242.
Ozcelik
,
A.
,
Rufo
,
J.
,
Guo
,
F.
,
Gu
,
Y. Y.
,
Li
,
P.
,
Lata
,
J.
, and
Huang
,
T. J.
,
2018
, “
Acoustic Tweezers for the Life Sciences
,”
Nat. Methods
,
15
(
12
), pp.
1021
1028
.10.1038/s41592-018-0222-9
243.
Gong
,
Z.
, and
Baudoin
,
M.
,
2019
, “
Particle Assembly With Synchronized Acoustic Tweezers
,”
Phys. Rev. Appl.
,
12
, p.
024045
.10.1103/PhysRevApplied.12.024045
244.
Anhäuser
,
A.
,
Wunenburger
,
R.
, and
Brasselet
,
E.
,
2012
, “
Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer
,”
Phys. Rev. Lett.
,
109
(
3
), p.
034301
.10.1103/PhysRevLett.109.034301
245.
Wunenburger
,
R.
,
Lozano
,
J. I. V.
, and
Brasselet
,
E.
,
2015
, “
Acoustic Orbital Angular Momentum Transfer to Matter by Chiral Scattering
,”
New J. Phys.
,
17
(
10
), p.
103022
.10.1088/1367-2630/17/10/103022
246.
Shi
,
C. Z.
,
Dubois
,
M.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2017
, “
High-Speed Acoustic Communication by Multiplexing Orbital Angular Momentum
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
28
), pp.
7250
7253
.10.1073/pnas.1704450114
247.
Ye
,
L. P.
,
Qiu
,
C. Y.
,
Lu
,
J. Y.
,
Tang
,
K.
,
Jia
,
H.
,
Ke
,
M. Z.
,
Peng
,
S. S.
, and
Liu
,
Z. Y.
,
2016
, “
Making Sound Vortices by Metasurfaces
,”
AIP Adv.
,
6
(
8
), p.
085007
.10.1063/1.4961062
248.
Guo
,
Z. Y.
,
Liu
,
H. J.
,
Zhou
,
H.
,
Zhou
,
K. Y.
,
Wang
,
S. M.
,
Shen
,
F.
,
Gong
,
Y. B.
,
Gao
,
J.
,
Liu
,
S. T.
, and
Guo
,
K.
,
2019
, “
High-Order Acoustic Vortex Field Generation Based on a Metasurface
,”
Phys. Rev. E
,
100
(
5
), p.
053315
.10.1103/PhysRevE.100.053315
249.
Luo
,
Y. C.
,
Jia
,
Y. R.
,
Yao
,
J.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2020
, “
Enhanced Fractional Acoustic Vortices by an Annulus Acoustic Metasurface With Multi-Layered Rings
,”
Adv. Mater. Technol.
,
5
, p.
2000356
.10.1002/admt.202000356
250.
Hou
,
Z. L.
,
Ding
,
H.
,
Wang
,
N. Y.
,
Fang
,
X. S.
, and
Li
,
Y.
,
2021
, “
Acoustic Vortices Via Nonlocal Metagratings
,”
Phys. Rev. Appl.
,
16
, p.
014002
.10.1103/PhysRevApplied.16.014002
251.
Jiang
,
X.
,
Ta
,
D.
, and
Wang
,
W. Q.
,
2020
, “
Modulation of Orbital-Angular-Momentum Symmetry of Nondiffractive Acoustic Vortex Beams and Realization Using a Metasurface
,”
Phys. Rev. Appl.
,
14
, p.
034014
.10.1103/PhysRevApplied.14.034014
252.
Jiang
,
X.
,
Zhao
,
J. J.
,
Liu
,
S. L.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yang
,
J.
,
Qiu
,
C. W.
, and
Cheng
,
J. C.
,
2016
, “
Broadband and Stable Acoustic Vortex Emitter With Multi-Arm Coiling Slits
,”
Appl. Phys. Lett.
,
108
(
20
), p.
203501
.10.1063/1.4949337
253.
Fan
,
X. D.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2019
, “
Illusion for Airborne Sound Source by a Closed Layer With Subwavelength Thickness
,”
Sci. Rep.
,
9
(
1
), p.
1750
.10.1038/s41598-018-38424-3
254.
Liu
,
Y. C.
,
Zhang
,
X.
,
Guo
,
J. H.
,
Yang
,
H.
,
Han
,
L. X.
,
Yao
,
Y. W.
, and
Wu
,
F. G.
,
2020
, “
Tailoring of Diversified Sound Vortices Using Curved Impedance-Matched Acoustic Metasurfaces
,”
Mod. Phys. Lett. B
,
34
(
12
), p.
2050121
.10.1142/S0217984920501213
255.
Liu
,
J. J.
,
Liang
,
B.
,
Yang
,
J.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2020
, “
Generation of Non-Aliased Two-Dimensional Acoustic Vortex With Enclosed Metasurface
,”
Sci. Rep.
,
10
(
1
), p.
3827
.10.1038/s41598-020-60836-3
256.
Liu
,
J. J.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2021
, “
Focusing a Two-Dimensional Acoustic Vortex Beyond Diffraction Limit on an Ultrathin Structured Surface
,”
Phys. Rev. Appl.
,
15
, p.
014015
.10.1103/PhysRevApplied.15.014015
257.
Liu
,
B. Y.
,
Su
,
Z. X.
,
Zeng
,
Y.
,
Wang
,
Y. T.
,
Huang
,
L. L.
, and
Zhang
,
S.
,
2021
, “
Acoustic Geometric-Phase Meta-Array
,”
New J. Phys.
,
23
(
11
), p.
113026
.10.1088/1367-2630/ac33f2
258.
Zeng
,
J. F.
,
Zhang
,
X.
,
Wu
,
F. G.
,
Han
,
L. X.
,
Wang
,
Q.
,
Mu
,
Z. F.
,
Dong
,
H. F.
, and
Yao
,
Y. W.
,
2019
, “
Phase Modulation of Acoustic Vortex Beam With Metasurfaces
,”
Phys. Lett. A
,
383
(
22
), pp.
2640
2644
.10.1016/j.physleta.2019.05.027
259.
Fu
,
Y. Y.
,
Shen
,
C.
,
Zhu
,
X. H.
,
Li
,
J. F.
,
Liu
,
Y. W.
,
Cummer
,
S. A.
, and
Xu
,
Y. D.
,
2020
, “
Sound Vortex Diffraction Via Topological Charge in Phase Gradient Metagratings
,”
Sci. Adv.
,
6
, p.
eaba9876
.10.1126/sciadv.aba9876
260.
Zou
,
Z. G.
,
Lirette
,
R.
, and
Zhang
,
L. K.
,
2020
, “
Orbital Angular Momentum Reversal and Asymmetry in Acoustic Vortex Beam Reflection
,”
Phys. Rev. Lett.
,
125
(
7
), p.
074301
.10.1103/PhysRevLett.125.074301
261.
Wang
,
W.
,
Tan
,
Y.
,
Liang
,
B.
,
Ma
,
G. C.
,
Wang
,
S. B.
, and
Cheng
,
J. C.
,
2021
, “
Generalized Momentum Conservation and Fedorov-Imbert Linear Shift of Acoustic Vortex Beams at a Metasurface
,”
Phys. Rev. B
,
104
(
17
), p.
174301
.10.1103/PhysRevB.104.174301
262.
Chen
,
D. C.
,
Zhou
,
Q. X.
,
Zhu
,
X. F.
,
Xu
,
Z.
, and
Wu
,
D. J.
,
2019
, “
Focused Acoustic Vortex by an Artificial Structure With Two Sets of Discrete Archimedean Spiral Slits
,”
Appl. Phys. Lett.
,
115
(
8
), p.
083501
.10.1063/1.5108687
263.
Jiménez
,
N.
,
Sánchez-Morcillo
,
V. J.
,
Picó
,
R.
,
Garcia-Raffi
,
L. M.
,
Romero-Garcia
,
V.
, and
Staliunas
,
K.
,
2015
, “
High-Order Acoustic Bessel Beam Generation by Spiral Gratings
,”
Phys. Procedia
,
70
, pp.
245
248
.10.1016/j.phpro.2015.08.146
264.
Wang
,
Y.
,
Qian
,
J.
,
Xia
,
J. P.
,
Ge
,
Y.
,
Yuan
,
S. Q.
,
Sun
,
H. X.
, and
Liu
,
X. J.
,
2021
, “
Acoustic Bessel Vortex Beam by Quasi-Three-Dimensional Reflected Metasurfaces
,”
Micromachines
,
12
(
11
), p.
1388
.10.3390/mi12111388
265.
Jiménez
,
N.
,
Groby
,
J. P.
, and
García
,
V. R.
,
2021
, “
Spiral Sound‐Diffusing Metasurfaces Based on Holographic Vortices
,”
Sci. Rep.
,
11
(
1
), p.
10217
.10.1038/s41598-021-89487-8
266.
Jiang
,
X.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Qiu
,
C. W.
,
2018
, “
Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing
,”
Adv. Mater.
,
30
(
18
), p.
1800257
.10.1002/adma.201800257
267.
Jiang
,
X.
,
Shi
,
C.
,
Wang
,
Y.
,
Smalley
,
J.
,
Cheng
,
J.
, and
Zhang
,
X.
,
2020
, “
Nonresonant Metasurface for Fast Decoding in Acoustic Communications
,”
Phys. Rev. Appl.
,
13
, p.
014014
.10.1103/PhysRevApplied.13.014014
268.
Jiménez-Gambín
,
S.
,
Jiménez
,
N.
, and
Camarena
,
F.
,
2020
, “
Transcranial Focusing of Ultrasonic Vortices by Acoustic Holograms
,”
Phys. Rev. Appl.
,
14
, p.
054070
.10.1103/PhysRevApplied.14.054070
269.
Gao
,
S. X.
,
Li
,
Y. B.
,
Ma
,
C. R.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2021
, “
Emitting Long-Distance Spiral Airborne Sound Using Low-Profile Planar Acoustic Antenna
,”
Nat. Commun.
,
12
(
1
), p.
2006
.10.1038/s41467-021-22325-7
270.
Zhu
,
Y. F.
,
Zou
,
X. Y.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2015
, “
Acoustic One-Way Open Tunnel by Using Metasurface
,”
Appl. Phys. Lett.
,
107
(
11
), p.
113501
.10.1063/1.4930300
271.
Liang
,
Q. X.
,
Cheng
,
Y.
,
He
,
J.
,
Chang
,
J. K.
,
Chen
,
T. N.
, and
Li
,
D. C.
,
2018
, “
Ultra-Broadband Acoustic Diode in Open Bend Tunnel by Negative Reflective Metasurface
,”
Sci. Rep.
,
8
(
1
), p.
16089
.10.1038/s41598-018-34314-w
272.
Zhu
,
Y. F.
,
Zou
,
X. Y.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2015
, “
Broadband Unidirectional Transmission of Sound in Unblocked Channel
,”
Appl. Phys. Lett.
,
106
(
17
), p.
173508
.10.1063/1.4919537
273.
Ge
,
Y.
,
Sun
,
H. X.
,
Yuan
,
S. Q.
, and
Lai
,
Y.
,
2018
, “
Broadband Unidirectional and Omnidirectional Bidirectional Acoustic Insulation Through an Open Window Structure With a Metasurface of Ultrathin Hooklike Meta-Atoms
,”
Appl. Phys. Lett.
,
112
(
24
), p.
243502
.10.1063/1.5025812
274.
Shen
,
C.
,
Xie
,
Y. B.
,
Li
,
J. F.
,
Cummer
,
S. A.
, and
Jing
,
Y.
,
2016
, “
Asymmetric Acoustic Transmission Through Near-Zero-Index and Gradient-Index Metasurfaces
,”
Appl. Phys. Lett.
,
108
(
22
), p.
223502
.10.1063/1.4953264
275.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2018
, “
Asymmetric Phase Modulation of Acoustic Waves Through Unidirectional Metasurfaces
,”
Appl. Phys. A
,
124
(
1
), p.
13
.10.1007/s00339-017-1289-3
276.
Jiang
,
X.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yang
,
J.
,
Yin
,
L. L.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2016
, “
Acoustic One-Way Metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer
,”
Sci. Rep.
,
6
, p.
28023
.10.1038/srep28023
277.
Gu
,
Z. M.
,
Fang
,
X. S.
,
Liu
,
T.
,
Gao
,
H.
,
Liang
,
S. J.
,
Li
,
Y.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Zhu
,
J.
,
2021
, “
Tunable Asymmetric Acoustic Transmission Via Binary Metasurface and Zero-Index Metamaterials
,”
Appl. Phys. Lett.
,
118
(
11
), p.
113501
.10.1063/5.0046756
278.
Song
,
A. L.
,
Chen
,
T. N.
,
Wang
,
X. P.
, and
Wan
,
L. L.
,
2016
, “
Waveform-Preserved Unidirectional Acoustic Transmission Based on Impedance-Matched Acoustic Metasurface and Phononic Crystal
,”
J. Appl. Phys.
,
120
(
8
), p.
085106
.10.1063/1.4961659
279.
Chen
,
C.
,
Chen
,
T. N.
,
Song
,
A. L.
,
Song
,
X. P.
, and
Zhu
,
J.
,
2020
, “
Switchable Asymmetric Acoustic Transmission Based on Topological Insulator and Metasurfaces
,”
J. Phys. D Appl. Phys.
,
53
(
44
), p.
44LT01
.10.1088/1361-6463/aba5c1
280.
Liu
,
B. Y.
, and
Jiang
,
Y. Y.
,
2018
, “
Controllable Asymmetric Transmission Via Gap-Tunable Acoustic Metasurface
,”
Appl. Phys. Lett.
,
112
(
17
), p.
173503
.10.1063/1.5023852
281.
Fu
,
Y. Y.
,
Tao
,
J. Q.
,
Song
,
A. L.
,
Liu
,
Y. W.
, and
Xu
,
Y. D.
,
2020
, “
Controllably Asymmetric Beam Splitting Via Gap-Induced Diffraction Channel Transition in Dual-Layer Binary Metagratings
,”
Front. Phys.
,
15
(
5
), p.
52502
.10.1007/s11467-020-0968-2
282.
Tang
,
S.
,
Ren
,
B.
,
Feng
,
Y. X.
,
Song
,
J.
, and
Jiang
,
Y. Y.
,
2022
, “
Broadband Controllable Asymmetric Accelerating Beam Via Bilayer Binary Acoustic Metasurfaces
,”
Ann. Phys. (Berlin)
,
534
(
2
), p.
2100208
.10.1002/andp.202100208
283.
Xia
,
R. Y.
,
Yi
,
J. L.
,
Chen
,
Z.
, and
Li
,
Z.
,
2020
, “
In Situ Steering of Shear Horizontal Waves in a Plate by a Tunable Electromechanical Resonant Elastic Metasurface
,”
J. Phys. D Appl. Phys.
,
53
(
9
), p.
095302
.10.1088/1361-6463/ab5cbc
284.
Xia
,
J. P.
,
Zhang
,
X. T.
,
Sun
,
H. X.
,
Yuan
,
S. Q.
,
Qian
,
J.
, and
Ge
,
Y.
,
2018
, “
Broadband Tunable Acoustic Asymmetric Focusing Lens From Dual-Layer Metasurfaces
,”
Phys. Rev. Appl.
,
10
, p.
014016
.10.1103/PhysRevApplied.10.014016
285.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
, and
Wu
,
D. J.
,
2018
, “
Bidirectional Asymmetric Acoustic Focusing by Two Flat Acoustic Metasurfaces
,”
Chin. Phys. B
,
27
(
12
), p.
124302
.10.1088/1674-1056/27/12/124302
286.
Zhu
,
X. H.
,
Li
,
J. F.
,
Shen
,
C.
,
Peng
,
X. Y.
,
Song
,
A. L.
,
Li
,
L. Q.
, and
Cummer
,
S. A.
,
2020
, “
Non-Reciprocal Acoustic Transmission Via Space-Time Modulated Membranes
,”
Appl. Phys. Lett.
,
116
(
3
), p.
034101
.10.1063/1.5132699
287.
Song
,
X. P.
,
Chen
,
T. N.
,
Zhu
,
J.
,
Ding
,
W.
,
Liang
,
Q. X.
, and
Wang
,
X. P.
,
2020
, “
Broadband and Broad-Angle Asymmetric Acoustic Transmission by Unbalanced Excitation of Surface Evanescent Waves Based on Single-Layer Metasurface
,”
Phys. Lett. A
,
384
(
21
), p.
126419
.10.1016/j.physleta.2020.126419
288.
Song
,
X. P.
,
Chen
,
T. N.
, and
Li
,
R.
,
2021
, “
Frequency Band-Selected One-Way Topological Edge Mode Via Acoustic Metamaterials and Metasurface
,”
J. Appl. Phys.
,
130
(
8
), p.
085101
.10.1063/5.0058546
289.
Wang
,
X.
,
Fang
,
X. S.
,
Mao
,
D. X.
,
Jing
,
Y.
, and
Li
,
Y.
,
2019
, “
Extremely Asymmetrical Acoustic Metasurface Mirror at the Exceptional Point
,”
Phys. Rev. Lett.
,
123
(
21
), p.
214302
.10.1103/PhysRevLett.123.214302
290.
Ju
,
F. F.
,
Zou
,
X.
,
Qian
,
S. Y.
, and
Liu
,
X. J.
,
2021
, “
Asymmetric Acoustic Retroflection With a non-Hermitian Metasurface Mirror
,”
Appl. Phys. Express
,
14
(
12
), p.
124001
.10.35848/1882-0786/ac3543
291.
Fu
,
Y. Y.
,
Shen
,
C.
,
Cao
,
Y. Y.
,
Gao
,
L.
,
Chen
,
H. Y.
,
Chan
,
C. T.
,
Cummer
,
S. A.
, and
Xu
,
Y. D.
,
2019
, “
Reversal of Transmission and Reflection Based on Acoustic Metagratings With Integer Parity Design
,”
Nat. Commun.
,
10
(
1
), p.
2326
.10.1038/s41467-019-10377-9
292.
Qian
,
J.
,
Wang
,
Y.
,
Xia
,
J. P.
,
Ge
,
Y.
,
Yuan
,
S. Q.
,
Sun
,
H. X.
, and
Liu
,
X. J.
,
2020
, “
Broadband Integrative Acoustic Asymmetric Focusing Lens Based on Mode-Conversion Meta-Atoms
,”
Appl. Phys. Lett.
,
116
(
22
), p.
223505
.10.1063/5.0004579
293.
Tang
,
S.
,
Ren
,
B.
,
Feng
,
Y. X.
,
Song
,
J.
, and
Jiang
,
Y. Y.
,
2021
, “
Asymmetric Acoustic Beam Shaping Based on Monolayer Binary Metasurfaces
,”
Appl. Phys. Express
,
14
(
8
), p.
085504
.10.35848/1882-0786/ac15bf
294.
Craig
,
S. R.
,
Su
,
X. S.
,
Norris
,
A.
, and
Shi
,
C. Z.
,
2019
, “
Experimental Realization of Acoustic Bianisotropic Gratings
,”
Phys. Rev. Appl.
,
11
, p.
061002
.10.1103/PhysRevApplied.11.061002
295.
Jia
,
H.
,
Ke
,
M. Z.
,
Li
,
C. H.
,
Qiu
,
C. Y.
, and
Liu
,
Z. Y.
,
2013
, “
Unidirectional Transmission of Acoustic Waves Based on Asymmetric Excitation of Lamb Waves
,”
Appl. Phys. Lett.
,
102
(
15
), p.
153508
.10.1063/1.4802254
296.
Li
,
C. H.
,
Ke
,
M. Z.
,
Ye
,
Y. T.
,
Xu
,
S. J.
,
Qiu
,
C. Y.
, and
Liu
,
Z. Y.
,
2014
, “
Broadband Asymmetric Acoustic Transmission by a Plate With Quasi-Periodic Surface Ridges
,”
Appl. Phys. Lett.
,
105
(
2
), p.
023511
.10.1063/1.4890721
297.
Xu
,
M. X.
,
Lee
,
P. V. S.
, and
Collins
,
D. J.
,
2022
, “
Microfluidic Acoustic Sawtooth Metasurfaces for Patterning and Separation Using Traveling Surface Acoustic Waves
,”
Lab Chip
,
22
(
1
), pp.
90
99
.10.1039/D1LC00711D
298.
Marzo
,
A.
,
Seah
,
S. A.
,
Drinkwater
,
B. W.
,
Sahoo
,
D. R.
,
Long
,
B.
, and
Subramanian
,
S.
,
2015
, “
Holographic Acoustic Elements for Manipulation of Levitated Objects
,”
Nat. Commun.
,
6
, p.
8661
.10.1038/ncomms9661
299.
Fushimi
,
T.
,
Yamamoto
,
K.
, and
Ochiai
,
Y.
,
2021
, “
Acoustic Hologram Optimisation Using Automatic Differentiation
,”
Sci. Rep.
,
11
(
1
), p.
12678
.10.1038/s41598-021-91880-2
300.
Hertzberg
,
Y.
, and
Navon
,
G.
,
2011
, “
Bypassing Absorbing Objects in Focused Ultrasound Using Computer Generated Holographic Technique
,”
Med. Phys.
,
38
(
12
), pp.
6407
6415
.10.1118/1.3651464
301.
Ma
,
Z. C.
,
Holle
,
A. W.
,
Melde
,
K.
,
Qiu
,
T.
,
Poeppel
,
K.
,
Kadiri
,
V. M.
, and
Fischer
,
P.
,
2020
, “
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel
,”
Adv. Mater.
,
32
(
4
), p.
1904181
.10.1002/adma.201904181
302.
Deng
,
Z. L.
,
Li
,
X. P.
, and
Li
,
G. X.
,
2020
, “
Metasurface Holography
,”
Synth. Lect. Mater. Opt.
,
1
(
4
), pp.
1
76
.10.2200/S01008ED1V01Y202004MOP004
303.
Xie
,
Y. B.
,
Shen
,
C.
,
Wang
,
W. Q.
,
Li
,
J. F.
,
Suo
,
D. J.
,
Popa
,
B. I.
,
Jing
,
Y.
, and
Cummer
,
S. A.
,
2016
, “
Acoustic Holographic Rendering With Two-Dimensional Metamaterial-Based Passive Phased Array
,”
Sci. Rep.
,
6
, p.
35437
.10.1038/srep35437
304.
Wang
,
H. P.
,
Gao
,
W. J.
,
Zhu
,
R. R.
,
Wang
,
Z. H.
,
Xu
,
Z. W.
, and
Zheng
,
B.
,
2019
, “
Ultrathin Acoustic Metasurface Holograms With Arbitrary Phase Control
,”
Appl. Sci.
,
9
(
17
), p.
3585
.10.3390/app9173585
305.
Melde
,
K.
,
Mark
,
A. G.
,
Qiu
,
T.
, and
Fischer
,
P.
,
2016
, “
Holograms for Acoustics
,”
Nature
,
537
(
7621
), pp.
518
522
.10.1038/nature19755
306.
Bakhtiari-Nejad
,
M.
,
Elnahhas
,
A.
,
Hajj
,
M. R.
, and
Shahab
,
S.
,
2018
, “
Acoustic Holograms in Contactless Ultrasonic Power Transfer Systems: Modeling and Experiment
,”
J. Appl. Phys.
,
124
(
24
), p.
244901
.10.1063/1.5048601
307.
Zhang
,
J.
,
Yang
,
Y.
,
Zhu
,
B. P.
,
Li
,
X. J.
,
Jin
,
J.
,
Chen
,
Z. Y.
,
Chen
,
Y.
, and
Zhou
,
Q. F.
,
2018
, “
Multifocal Point Beam Forming by a Single Ultrasonic Transducer With 3D Printed Holograms
,”
Appl. Phys. Lett.
,
113
(
24
), p.
243502
.10.1063/1.5058079
308.
Brown
,
M. D.
,
2019
, “
Phase and Amplitude Modulation With Acoustic Holograms
,”
Appl. Phys. Lett.
,
115
(
5
), p.
053701
.10.1063/1.5110673
309.
Zhu
,
Y. F.
,
Hu
,
J.
,
Fan
,
X. D.
,
Yang
,
J.
,
Liang
,
B.
,
Zhu
,
X. F.
, and
Cheng
,
J. C.
,
2018
, “
Fine Manipulation of Sound Via Lossy Metamaterials With Independent and Arbitrary Reflection Amplitude and Phase
,”
Nat. Commun.
,
9
(
1
), p.
1632
.10.1038/s41467-018-04103-0
310.
Zhu
,
Y. F.
, and
Assouar
,
B.
,
2019
, “
Systematic Design of Multiplexed-Acoustic-Metasurface Hologram With Simultaneous Amplitude and Phase Modulations
,”
Phys. Rev. Mater.
,
3
, p.
045201
.10.1103/PhysRevMaterials.3.045201
311.
Zhang
,
J.
,
Tian
,
Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2020
, “
Acoustic Holography Using Composite Metasurfaces
,”
Appl. Phys. Lett.
,
116
(
3
), p.
030501
.10.1063/1.5132629
312.
Chen
,
Z.
,
Shao
,
S. X.
,
Negahban
,
M.
, and
Li
,
Z.
,
2019
, “
Tunable Metasurface for Acoustic Wave Redirection, Focusing and Source Illusion
,”
J. Phys. D Appl. Phys.
,
52
(
39
), p.
395503
.10.1088/1361-6463/ab2abd
313.
Zhang
,
C.
,
Cao
,
W. K.
,
Wu
,
L. T.
,
Ke
,
J. C.
,
Jing
,
Y.
,
Cui
,
T. J.
, and
Cheng
,
Q.
,
2021
, “
A Reconfigurable Active Acoustic Metalens
,”
Appl. Phys. Lett.
,
118
(
13
), p.
133502
.10.1063/5.0045024
314.
Gong
,
K. M.
,
Wang
,
X. F.
,
Ouyang
,
H. J.
, and
Mo
,
J. L.
,
2019
, “
Tuneable Gradient Helmholtz-Resonator-Based Acoustic Metasurface for Acoustic Focusing
,”
J. Phys. D Appl. Phys.
,
52
(
38
), p.
385303
.10.1088/1361-6463/ab2b85
315.
Tian
,
Z. H.
,
Shen
,
C.
,
Li
,
J. F.
,
Reit
,
E.
,
Gu
,
Y. Y.
,
Fu
,
H.
,
Cummer
,
S. A.
, and
Huang
,
T. J.
,
2019
, “
Programmable Acoustic Metasurfaces
,”
Adv. Funct. Mater.
,
29
(
13
), p.
1808489
.10.1002/adfm.201808489
316.
Song
,
X. P.
,
Chen
,
T. N.
,
Zhu
,
J.
,
He
,
Y. Q.
, and
Liu
,
Z. Q.
,
2019
, “
Broadband Acoustic Cloaking and Disguising With Full-Rangle Incident Angles Based on Reconfigurable Metasurface
,”
Int. J. Mod. Phys. B
,
33
(
24
), p.
1950273
.10.1142/S0217979219502734
317.
Song
,
X. P.
,
Chen
,
T. N.
, and
Zhu
,
J.
,
2019
, “
Acoustic Reprogrammable Metasurface for the Multi‐Frequency Tri‐Channel Retroreflector
,”
Appl. Phys. A
,
125
(
10
), p.
679
.10.1007/s00339-019-2967-0
318.
Wang
,
X. L.
,
Yang
,
J.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2020
, “
Tunable Annular Acoustic Metasurface for Transmitted Wavefront Modulation
,”
Appl. Phys. Express
,
13
(
1
), p.
014002
.10.7567/1882-0786/ab59a5
319.
Zhai
,
S. L.
,
Song
,
K.
,
Ding
,
C. L.
,
Wang
,
Y. B.
,
Dong
,
Y. B.
, and
Zhao
,
X. P.
,
2018
, “
Tunable Acoustic Metasurface With High-Q Spectrum Splitting
,”
Materials
,
11
(
10
), p.
1976
.10.3390/ma11101976
320.
Zou
,
H.
,
Xu
,
Z.
,
Hu
,
Y.
,
Du
,
Q.
, and
Peng
,
P.
,
2022
, “
Reflected Continuously Tunable Acoustic Metasurface With Rotatable Space Coiling-Up Structure
,”
Phys. Lett. A
,
426
, p.
127891
.10.1016/j.physleta.2021.127891
321.
Chiang
,
Y. K.
,
Oberst
,
S.
,
Melnikov
,
A.
,
Quan
,
L.
,
Marburg
,
S.
,
Alù
,
A.
, and
Powell
,
D. A.
,
2020
, “
Reconfigurable Acoustic Metagrating for High Efficiency Anomalous Reflection
,”
Phys. Rev. Appl.
,
13
, p.
064067
.10.1103/PhysRevApplied.13.064067
322.
Xie
,
S. H.
,
Fang
,
X. S.
,
Li
,
P. Q.
,
Huang
,
S. B.
,
Peng
,
Y. G.
,
Shen
,
Y. X.
,
Li
,
Y.
, and
Zhu
,
X. F.
,
2020
, “
Tunable Double-Band Perfect Absorbers Via Acoustic Metasurfaces With Nesting Helical Tracks Chin
,”
Phys. Lett.
,
37
(
5
), p.
054301
.10.1088/0256-307X/37/5/054301
323.
Fan
,
S. W.
,
Wang
,
Y. F.
,
Cao
,
L. Y.
,
Zhu
,
Y. F.
,
Chen
,
A. L.
,
Vincent
,
B.
,
Assouar
,
M. B.
, and
Wang
,
Y. S.
,
2020
, “
Acoustic Vortices With High-Order Orbital Angular Momentum by a Continuously Tunable Metasurface
,”
Appl. Phys. Lett.
,
116
(
16
), p.
163504
.10.1063/5.0007351
324.
Yuan
,
B. G.
,
Cheng
,
Y.
, and
Liu
,
X. J.
,
2015
, “
Conversion of Sound Radiation Pattern Via Gradient Acoustic Metasurface With Space-Coiling Structure
,”
Appl. Phys. Express
,
8
(
2
), p.
027301
.10.7567/APEX.8.027301
325.
Popa
,
B. I.
,
Shinde
,
D.
,
Konneker
,
A.
, and
Cummer
,
S. A.
,
2015
, “
Active Acoustic Metamaterials Reconfigurable in Real Time
,”
Phys. Rev. B
,
91
(
22
), p.
220303
.10.1103/PhysRevB.91.220303
326.
Popa
,
B. I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
,
2013
, “
Tunable Active Acoustic Metamaterials
,”
Phys. Rev. B
,
88
(
2
), p.
024303
.10.1103/PhysRevB.88.024303
327.
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Non-Reciprocal and Highly Nonlinear Active Acoustic Metamaterials
,”
Nat. Commun.
,
5
, p.
3398
.10.1038/ncomms4398
328.
Li
,
S.
,
Xu
,
J.
,
Yao
,
Y.
, and
Tang
,
J.
,
2021
, “
Tunable Reflected Acoustic Wave Front Modulated With Piezoelectric Metasurfaces
,”
J. Phys. D Appl. Phys.
,
54
(
9
), p.
095102
.10.1088/1361-6463/abc917
329.
Li
,
X.
,
Zhou
,
Y.
,
Yang
,
Z. Z.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
,
2022
, “
Tunable Acoustic Metasurface Based on PVDF/Polyimide Unimorph Sheets
,”
Appl. Phys. Express
,
15
(
1
), p.
014001
.10.35848/1882-0786/ac414b
330.
Peng
,
Y. Y.
,
Chen
,
J. H.
,
Yang
,
Z. Z.
,
Zou
,
X. Y.
,
Tao
,
C.
, and
Cheng
,
J. C.
,
2022
, “
Broadband Tunable Acoustic Metasurface Based on Piezoelectric Composite Structure With Two Resonant Modes
,”
Appl. Phys. Express
,
15
(
1
), p.
014004
.10.35848/1882-0786/ac444a
331.
Peng
,
Y. Y.
,
Yang
,
Z. Z.
,
Zhang
,
Z. L.
,
Zou
,
X. Y.
,
Tao
,
C.
, and
Cheng
,
J. C.
,
2022
, “
Tunable Acoustic Metasurface Based on Tunable Piezoelectric Composite Structure
,”
J. Acoust. Soc. Am.
,
151
(
2
), pp.
838
845
.10.1121/10.0009379
332.
Shen
,
Y. X.
,
Zhu
,
X. F.
,
Cai
,
F. Y.
,
Ma
,
T.
,
Li
,
F.
,
Xia
,
X. X.
,
Li
,
Y. C.
,
Wang
,
C. Z.
, and
Zheng
,
H. R.
,
2019
, “
Active Acoustic Metasurface: Complete Elimination of Grating Lobes for High-Quality Ultrasound Focusing and Controllable Steering
,”
Phys. Rev. Appl.
,
11
, p.
034009
.10.1103/PhysRevApplied.11.034009
333.
Li
,
S.
,
Xu
,
J.
, and
Tang
,
J.
,
2018
, “
Tunable Modulation of Refracted Lamb Wave Front Facilitated by Adaptived Elastic Metasurfaces
,”
Appl. Phys. Lett.
,
112
(
2
), p.
021903
.10.1063/1.5011675
334.
Ma
,
G. C.
,
Fan
,
X. Y.
,
Sheng
,
P.
, and
Fink
,
M.
,
2018
, “
Shaping Reverberating Sound Fields With an Actively Tunable Metasurface
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
26
), pp.
6638
6643
.10.1073/pnas.1801175115
335.
Zhang
,
S. Z.
,
Shu
,
S. W.
, and
Bian
,
X. H.
,
2022
, “
Tunability for Anomalous Refraction of Flexural Wave in a Magneto-Elastic Metasurface by Magnetic Field and Pre-Stress
,”
Appl. Phys. Express
,
15
(
2
), p.
027003
.10.35848/1882-0786/ac4925
336.
Giovampaola
,
C. D.
, and
Engheta
,
N.
,
2014
, “
Digital Metamaterials
,”
Nat. Mater.
,
13
(
12
), pp.
1115
1121
.10.1038/nmat4082
337.
Cui
,
T. J.
,
Qi
,
M. Q.
,
Wan
,
X.
,
Zhao
,
J.
, and
Cheng
,
Q.
,
2014
, “
Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials
,”
Light Sci. Appl.
,
3
(
10
), pp.
e218
e218
.10.1038/lsa.2014.99
338.
Gao
,
L. H.
,
Cheng
,
Q.
,
Yang
,
J.
,
Ma
,
S. J.
,
Zhao
,
J.
,
Liu
,
S.
,
Chen
,
H. B.
, et al.,
2015
, Broadband Diffusion of Terahertz Waves by Multi-Bit Coding Metasurfaces,”
Light Sci. Appl.
,
4
(
9
), p.
e324
.10.1038/lsa.2015.97
339.
Fan
,
X. D.
,
Zhu
,
Y. F.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2016
, “
Broadband Convergence of Acoustic Energy With Binary Reflected Phases on Planar Surface
,”
Appl. Phys. Lett.
,
109
(
24
), p.
243501
.10.1063/1.4971795
340.
Xie
,
B. Y.
,
Cheng
,
H.
,
Tang
,
K.
,
Liu
,
Z. Y.
,
Chen
,
S. Q.
, and
Tian
,
J. G.
,
2017
, “
Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces
,”
Phys. Rev. Appl.
,
7
(
2
), p.
024010
.10.1103/PhysRevApplied.7.024010
341.
Cao
,
W. K.
,
Wu
,
L. T.
,
Zhang
,
C.
,
Ke
,
J. C.
,
Cheng
,
Q.
, and
Cui
,
T. J.
,
2019
, “
A Reflective Acoustic Meta-Diffuser Based on the Coding Meta-Surface
,”
J. Appl. Phys.
,
126
(
19
), p.
194503
.10.1063/1.5120111
342.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2019
, “
Broadband Airy-Like Beams by Coded Acoustic Metasurfaces
,”
Appl. Phys. Lett.
,
114
(
5
), p.
053504
.10.1063/1.5080202
343.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Yao
,
J.
, and
Wu
,
D. J.
,
2020
, “
Broadband Tunable Focusing Lenses by Acoustic Coding Metasurfaces
,”
J. Phys. D Appl. Phys.
,
53
(
25
), p.
255501
.10.1088/1361-6463/ab8247
344.
Li
,
W. B.
,
Meng
,
F.
, and
Huang
,
X. D.
,
2020
, “
Coding Metalens With Helical-Structured Units for Acoustic Focusing and Splitting
,”
Appl. Phys. Lett.
,
117
(
2
), p.
021901
.10.1063/5.0012784
345.
Zhang
,
N. L.
,
Zhao
,
S. D.
,
Dong
,
H. W.
,
Wang
,
Y. S.
, and
Zhang
,
C.
,
2022
, “
Reflection-Type Broadband Acoustic Coding Metasurfaces for Acoustic Focusing and Splitting
,”
Appl. Phys. Lett.
,
120
(
14
), p.
142201
.10.1063/5.0087339
346.
Fang
,
X. S.
,
Wang
,
X.
, and
Li
,
Y.
,
2019
, “
Acoustic Splitting and Bending With Compact Coding Metasurfaces
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064033
.10.1103/PhysRevApplied.11.064033
347.
Zuo
,
S. Y.
,
Tian
,
Y.
,
Cheng
,
Y.
,
Deng
,
M. X.
,
Hu
,
N.
, and
Liu
,
X. J.
,
2019
, “
Asymmetric Coding Metasurfaces for the Controllable Projection of Acoustic Images
,”
Phys. Rev. Mater.
,
3
, p.
065204
.10.1103/PhysRevMaterials.3.065204
348.
Su
,
G. Y.
, and
Liu
,
Y. Q.
,
2020
, “
Amplitude-Modulated Binary Acoustic Metasurface for Perfect Anomalous Refraction
,”
Appl. Phys. Lett.
,
117
(
22
), p.
221901
.10.1063/5.0032509
349.
Zhang
,
Y.
,
Cheng
,
H.
,
Tian
,
J. G.
, and
Chen
,
S. Q.
,
2020
, “
Frequency-Selected Bifunctional Coding Acoustic Metasurfaces
,”
Phys. Rev. Appl.
,
14
(
6
), p.
064057
.10.1103/PhysRevApplied.14.064057
350.
Song
,
X. P.
,
Chen
,
T. N.
,
Huang
,
W. K.
, and
Chen
,
C.
,
2021
, “
Frequency-Selective Modulation of Reflected Wave Fronts Using a Four-Mode Coding Acoustic Metasurface
,”
Phys. Lett. A
,
394
, p.
127145
.10.1016/j.physleta.2021.127145
351.
Tang
,
H. C.
,
Chen
,
Z. S.
,
Tang
,
N.
,
Li
,
S. F.
,
Shen
,
Y. X.
,
Peng
,
Y. G.
,
Zhu
,
X. F.
, and
Zang
,
J. F.
,
2018
, “
Hollow-Out Patterning Ultrathin Acoustic Metasurfaces for Multifunctionalities Using Soft Fiber/Rigid Bead Networks
,”
Adv. Funct. Mater.
,
28
(
36
), p.
1801127
.10.1002/adfm.201801127
352.
Tang
,
H. C.
,
Hao
,
Z. Q.
, and
Zang
,
J. F.
,
2019
, “
Nonplanar Acoustic Metasurface for Focusing
,”
J. Appl. Phys.
,
125
(
15
), p.
154901
.10.1063/1.5082670
353.
Fu
,
Y. Y.
,
Cao
,
Y. Y.
, and
Xu
,
Y. D.
,
2019
, “
Multifunctional Reflection in Acoustic Metagratings With Simplified Design
,”
Appl. Phys. Lett.
,
114
(
5
), p.
053502
.10.1063/1.5083081
354.
Zhu
,
X. F.
, and
Lau
,
S. K.
,
2019
, “
Perfect Anomalous Reflection and Refraction With Binary Acoustic Metasurfaces
,”
J. Appl. Phys.
,
126
(
22
), p.
224504
.10.1063/1.5124040
355.
Chen
,
S.
,
Fan
,
Y. C.
,
Fan
,
Y.
,
Sun
,
K. Y.
,
Fu
,
Q. H.
,
Zheng
,
J. B.
, and
Zhang
,
F. L.
,
2021
, “
Coiling-Up Space Metasurface for High-Efficient and Wide-Angle Acoustic Wavefront Steering
,”
Front. Mater.
,
8
, p.
790987
.10.3389/fmats.2021.790987
356.
Gao
,
H.
,
Gu
,
Z. M.
,
Liang
,
S. J.
,
An
,
S. W.
,
Liu
,
T.
, and
Zhu
,
J.
,
2020
, “
Coding Metasurface for Talbot Sound Amplification
,”
Phys. Rev. Appl.
,
14
(
5
), p.
054067
.10.1103/PhysRevApplied.14.054067
357.
Zhao
,
S. D.
,
Dong
,
H. W.
,
Miao
,
X. B.
,
Wang
,
Y. S.
, and
Zhang
,
C.
,
2022
, “
Broadband Programmable Coding Metasurfaces With 2-Bit Manipulations
,”
Phys. Rev. Appl.
,
17
(
3
), p.
034019
.10.1103/PhysRevApplied.17.034019
358.
Zhang
,
Y.
,
Xie
,
B. Y.
,
Liu
,
W. W.
,
Cheng
,
H.
,
Chen
,
S. Q.
, and
Tian
,
J. G.
,
2019
, “
Anomalous Reflection and Vortex Beam Generation by Multi-Bit Coding Acoustic Metasurfaces
,”
Appl. Phys. Lett.
,
114
(
9
), p.
091905
.10.1063/1.5087636
359.
Bai
,
G. D.
,
Ma
,
Q.
,
Cao
,
W. K.
,
Li
,
R. Q.
,
Jing
,
H. B.
,
Mu
,
J.
,
Bao
,
L.
,
Wu
,
R. Y.
,
Zhang
,
C.
,
Wan
,
X.
,
Cheng
,
Q.
, and
Cui
,
T. J.
,
2019
, “
Manipulation of Electromagnetic and Acoustic Wave Behaviors Via Shared Digital Coding Metallic Metasurfaces
,”
Adv. Intell. Syst.
,
1
(
5
), p.
1900038
.10.1002/aisy.201900038
360.
Fakheri
,
M. H.
,
Rajabalipanah
,
H.
, and
Abdolali
,
A.
,
2021
, “
Spatiotemporal Binary Acoustic Metasurfaces
,”
Phys. Rev. Appl.
,
16
, p.
024062
.10.1103/PhysRevApplied.16.024062
361.
Cao
,
W. K.
,
Zhang
,
C.
,
Wu
,
L. T.
,
Guo
,
K. Q.
,
Ke
,
J. C.
,
Cui
,
T. J.
, and
Cheng
,
Q.
,
2021
, “
Tunable Acoustic Metasurface for Three-Dimensional Wave Manipulations
,”
Phys. Rev. Appl.
,
15
, p.
024026
.10.1103/PhysRevApplied.15.024026
362.
Yu
,
G. K.
,
Qiu
,
Y. P.
,
Li
,
Y.
,
Wang
,
X. L.
, and
Wang
,
N.
,
2021
, “
Underwater Acoustic Stealth by a Broadband 2-Bit Coding Metasurface
,”
Phys. Rev. Appl.
,
15
, p.
064064
.10.1103/PhysRevApplied.15.064064
363.
Li
,
X. S.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
,
2022
, “
Sparse Binary Metasurfaces for Steering the Flexural Waves
,”
Extreme Mech. Lett.
,
52
, p.
101675
.10.1016/j.eml.2022.101675
364.
Yaw
,
Z.
,
Zhou
,
W. J.
,
Chen
,
Z. Y.
, and
Lim
,
C. W.
,
2021
, “
Stiffness Tuning of a Functional-Switchable Active Coding Elastic Metasurface
,”
Int. J. Mech. Sci.
,
207
, p.
106654
.10.1016/j.ijmecsci.2021.106654
365.
Sun
,
H. T.
,
Wang
,
J. S.
,
Cheng
,
Y.
,
Wei
,
Q.
, and
Liu
,
X. J.
,
2016
, “
Modulation of Water Surface Waves With a Coiling-Up-Space Metasurface
,”
AIP Adv.
,
6
(
5
), p.
055017
.10.1063/1.4950962
366.
Chaplain
,
G. J.
, and
De Ponti
,
J. M.
,
2022
, “
The Elastic Spiral Phase Pipe
,”
J. Sound Vib.
,
523
, p.
116718
.10.1016/j.jsv.2021.116718
367.
Dong
,
H. W.
,
Zhao
,
S. D.
,
Oudich
,
M.
,
Shen
,
C.
,
Ch
,
Z.
,
Cheng
,
L.
,
Wang
,
Y. S.
, and
Fang
,
D. N.
,
2022
, “
Reflective Metasurfaces With Multiple Elastic Mode Conversions for Broadband Underwater Sound Absorption
,”
Phys. Rev. Appl.
,
17
, p.
044013
.10.1103/PhysRevApplied.17.044013
368.
Zhang
,
H.
,
Wei
,
Z.
,
Fan
,
L.
,
Qu
,
J.
, and
Zhang
,
S. Y.
,
2016
, “
Tunable Sound Transmission at Impedance-Mismatched Fluidic Interface Assisted by a Composite Waveguide
,”
Sci. Rep.
,
6
, p.
34688
.10.1038/srep34688
369.
Lee
,
T.
, and
Iizuka
,
H.
,
2020
, “
Sound Propagation Across the Air/Water Interface by a Critically Coupled Resonant Bubble
,”
Phys. Rev. B
,
102
(
10
), p.
104105
.10.1103/PhysRevB.102.104105
370.
Bok
,
E.
,
Park
,
J. J.
,
Choi
,
H.
,
Han
,
C. K.
,
Wright
,
O. B.
, and
Lee
,
S. H.
,
2018
, “
Metasurface for Water-to-Air Sound Transmission
,”
Phys. Rev. Lett.
,
120
(
4
), p.
044302
.10.1103/PhysRevLett.120.044302
371.
Cai
,
Z. R.
,
Zhao
,
S. D.
,
Huang
,
Z. D.
,
Li
,
Z.
,
Su
,
M.
,
Zhang
,
Z. Y.
,
Zhao
,
Z. P.
,
Hu
,
X. T.
,
Wang
,
Y. S.
, and
Song
,
Y. L.
,
2019
, “
Bubble Architectures for Locally Resonant Acoustic Metamaterials
,”
Adv. Funct. Mater.
,
29
(
51
), p.
1906984
.10.1002/adfm.201906984
372.
Park
,
C.
, Il
,
Piao
,
C. G.
,
Lee
,
H.
, and
Kim
,
Y. Y.
,
2021
, “
Elastic Complementary Meta-Layer for Ultrasound Penetration Through Solid/Liquid/Gas Barriers
,”
Int. J. Mech. Sci.
,
206
, p.
106619
.10.1016/j.ijmecsci.2021.106619
373.
Lee
,
S. W.
,
Shin
,
Y. J.
,
Park
,
H. W.
,
Seung
,
H. M.
, and
Oh
,
J. H.
,
2021
, “
Full-Wave Tailoring Between Different Elastic Media: A Double-Unit Elastic Metasurface
,”
Phys. Rev. Appl.
,
16
, p.
064013
.10.1103/PhysRevApplied.16.064013
374.
Zhang
,
X.
,
Ma
,
J. Y.
,
Li
,
M. Y.
,
You
,
Z.
,
Wang
,
X. Y.
,
Luo
,
Y.
,
Ma
,
K. X.
, and
Chen
,
Y.
,
2022
, “
Kirigami-Based Metastructures With Programmable Multistability
,”
Proc. Natl. Acad. Sci.
,
119
(
11
), p.
e2117649119
.10.1073/pnas.2117649119
375.
Weng
,
J. K.
,
Ding
,
Y. J.
,
Hu
,
C. B.
,
Zhu
,
X. F.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2020
, “
Meta-Neural-Network for Real-Time and Passive Deep-Learning-Based Object Recognition
,”
Nat. Commun.
,
11
(
1
), p.
6309
.10.1038/s41467-020-19693-x
376.
Lin
,
Q.
,
Wang
,
J. Q.
,
Cai
,
F. Y.
,
Zhang
,
R. J.
,
Zhao
,
D. G.
,
Xia
,
X. X.
,
Wang
,
J. P.
, and
Zheng
,
H. R.
,
2021
, “
A Deep Learning Approach for the Fast Generation of Acoustic Holograms
,”
J. Acoust. Soc. Am.
,
149
(
4
), pp.
2312
2322
.10.1121/10.0003959
377.
Donda
,
K.
,
Zhu
,
Y. F.
,
Merkel
,
A.
,
Fan
,
S. W.
,
Cao
,
L. Y.
,
Wan
,
S.
, and
Assouar
,
B.
,
2021
, “
Ultrathin Acoustic Absorbing Metasurface Based on Deep Learning Approach
,”
Smart Mater. Struct.
,
30
(
8
), p.
085003
.10.1088/1361-665X/ac0675
378.
Ding
,
H.
,
Fang
,
X. S.
,
Jia
,
B.
,
Wang
,
N. Y.
,
Cheng
,
Q.
, and
Li
,
Y.
,
2021
, “
Deep Learning Enables Accurate Sound Redistribution Via Nonlocal Metasurfaces
,”
Phys. Rev. Appl.
,
16
, p.
064035
.10.1103/PhysRevApplied.16.064035
379.
Xu
,
Z. K.
,
Qin
,
L.
,
Xu
,
W.
,
Fang
,
S. H.
, and
Wang
,
J. Y.
,
2021
, “
Design Approach of Perforated Labyrinth Based Acoustic Metasurface for Selective Acoustic Levitation Manipulation
,”
Sci. Rep.
,
11
(
1
), p.
7619
.10.1038/s41598-021-87179-x
380.
Zhou
,
Q. X.
,
Zhang
,
J.
,
Ren
,
X. M.
,
Xu
,
Z.
, and
Liu
,
X. J.
,
2020
, “
Multi-Bottle Beam Generation Using Acoustic Holographic Lens
,”
Appl. Phys. Lett.
,
116
(
13
), p.
133502
.10.1063/5.0003379