Abstract
It has been 5 years since this review of elastic-plastic contact mechanics was published. The area still remains very active, and many advancements have been made since then. This discussion summarizes these advances and points out what might be considered the most significant ones. In some cases, experimental measurements have confirmed previous theoretical predictions. In most cases, the models of contact mechanics have increased in complexity in order to improve predictions for real applications. As a fundamental area, contact mechanics will undoubtedly remain active as its implementation is often required for new applications of technology to succeed.
Issue Section:
Discussion
References
1.
Pore
,
T.
,
Thorat
,
S. G.
, and
Nema
,
A. A.
, 2021
, “
Review of Contact Modelling in Nonlinear Finite Element Analysis
,” Mater. Today: Proc.
,
47
, pp. 2436
–2440
.10.1016/j.matpr.2021.04.5042.
Xu
,
Y.
, and
Jackson
,
R. L.
, 2019
, “
Boundary Element Method (BEM) Applied to the Rough Surface Contact vs. BEM in Computational Mechanics
,” Friction
,
7
(4
), pp. 359
–371
.10.1007/s40544-018-0229-33.
Jackson
,
R. L.
,
Xu
,
Y.
,
Saha
,
S.
, and
Schulze
,
K. D.
, 2021
, “
Elastic Rough Surface Contact and the Root Mean Square Slope of Measured Surfaces Over Multiple Scales
,” Fractal Fractional
,
5
(2
), p. 44
.10.3390/fractalfract50200444.
Tiwari
,
A.
,
Almqvist
,
A.
, and
Persson
,
B. N. J.
, 2020
, “
Plastic Deformation of Rough Metallic Surfaces
,” Tribol. Lett.
,
68
(4
), p. 129
.10.1007/s11249-020-01368-95.
Taylor
,
R. I.
, 2022
, “
Rough Surface Contact Modelling: A Review
,” Lubricants
,
10
(5
), p. 98
.10.3390/lubricants100500986.
Quicksall
,
J. J.
,
Jackson
,
R. L.
, and
Green
,
I.
, 2004
, “
Elasto-Plastic Hemispherical Contact Models for Various Mechanical Properties
,” Proc. Inst. Mech. Eng., Part J
,
218
(4
), pp. 313
–322
.10.1243/13506500417626047.
Johnson
,
K. L.
, 1985
, Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.8.
Xu
,
K.
,
Chu
,
N. R.
, and
Jackson
,
R. L.
, 2021
, “
An Investigation of the Elastic Cylindrical Line Contact Equations for Plane Strain and Stress Considering Friction
,” Proc. Inst. Mech. Eng., Part J
, 236(9), pp. 1889
–1897
.10.1177/13506501219921789.
Guo
,
T.
,
Hua
,
X.
,
Yan
,
Z.
,
Meng
,
L.
, and
Peng
,
L.
, 2021
, “
Study of a Parabolic Cylinder Elastic-Plastic Contact Model
,” Adv. Mech. Eng.
,
13
(10
), pp. 1
–12
.10.1177/1687814021105498210.
Jackson
,
R. L.
, 2018
, “
A Solution of Rigid Perfectly Plastic Cylindrical Indentation in Plane Strain and Comparison to Elastic-Plastic Finite Element Predictions With Hardening
,” ASME J. Appl. Mech.
,
85
(2
), p. 024501
.10.1115/1.403849511.
Ghaednia
,
H.
,
Mifflin
,
G.
,
Lunia
,
P.
,
O'Neill
,
E. O.
, and
Brake
,
M. R. W.
, 2020
, “
Strain Hardening From Elastic-Perfectly Plastic to Perfectly Elastic Indentation Single Asperity Contact
,” Front. Mech. Eng.
,
6
(60
), pp. 1
–15
.10.3389/fmech.2020.0006012.
Brutti
,
C.
, 2021
, “
A Theoretical Model for Elastic-Perfectly Plastic Flat Cylindrical Punch Indentation
,” Mech. Mater.
,
155
, p. 103770
.10.1016/j.mechmat.2021.10377013.
Midawi
,
A. R. H.
,
Simha
,
C. H. M.
,
Gesing
,
M. A.
, and
Gerlich
,
A. P.
, 2017
, “
Elastic-Plastic Property Evaluation Using a Nearly Flat Instrumented Indenter
,” Int. J. Solids Struct.
,
104
, pp. 81
–91
.10.1016/j.ijsolstr.2016.09.03614.
Larsson
,
P.-L.
, 2018
, “
On the Variation of Hardness Due to Uniaxial and Equi-Biaxial Residual Surface Stresses at Elastic–Plastic Indentation
,” J. Mater. Eng. Perform.
,
27
(6
), pp. 3168
–3173
.10.1007/s11665-018-3393-815.
Argatov
,
I.
, 2022
, “
A Comparison of General Solutions to the Non-Axisymmetric Frictionless Contact Problem With a Circular Area of Contact: When the Symmetry Does Not Matter
,” Symmetry
,
14
(6
), p. 1083
.10.3390/sym1406108316.
Pintaude
,
G.
, 2022
, “
Hardness as an Indicator of Material Strength: A Critical Review
,” Crit. Rev. Solid State Mater. Sci.
, pp. 1
–19
.10.1080/10408436.2022.208565917.
Juettner
,
M.
,
Bartz
,
M.
,
Tremmel
,
S.
,
Correns
,
M.
, and
Wartzack
,
S.
, 2022
, “
Edge Pressures Obtained Using FEM and Half-Space: A Study of Truncated Contact Ellipses
,” Lubricants
,
10
(6
), p. 107
.10.3390/lubricants1006010718.
Zhang
,
H.
, and
Etsion
,
I.
, 2021
, “
Evolution of Adhesive Wear and Friction in Elastic-Plastic Spherical Contact
,” Wear
,
478
, p. 203915
.10.1016/j.wear.2021.20391519.
Zhang
,
H.
, and
Etsion
,
I.
, 2022
, “
An Advanced Efficient Model for Adhesive Wear in Elastic—Plastic Spherical Contact
,” Friction
,
10
(8
), pp. 1276
–1284
.10.1007/s40544-021-0569-220.
Aghababaei
,
R.
,
Brink
,
T.
, and
Molinari
,
J.-F.
, 2018
, “
Asperity-Level Origins of Transition From Mild to Severe Wear
,” Phys. Rev. Lett.
,
120
(18
), p. 186105
.10.1103/PhysRevLett.120.18610521.
Salari
,
S.
, and
Beheshti
,
A.
, 2021
, “
Asperity-Based Contact and Static Friction With Provision for Creep: A Review
,” Surf. Interfaces
,
24
, p. 101144
.10.1016/j.surfin.2021.10114422.
Alamos
,
F. J.
,
Philo
,
M.
,
Go
,
D. B.
, and
Schmid
,
S. R.
, 2021
, “
Asperity Contact Under Creep Conditions
,” Tribol. Int.
,
160
, p. 107039
.10.1016/j.triboint.2021.10703923.
Green
,
I.
, 2018
, “
An Elastic-Plastic Finite Element Analysis of Two Interfering Hemispheres Sliding in Frictionless Contact
,” Phys. Sci. Int. J.
,
19
(1
), pp. 1
–34
.10.9734/PSIJ/2018/4278324.
Green
,
I.
, 2022
, “
The Prediction of the Coefficient of Restitution Between Impacting Spheres and Finite Thickness Plates Undergoing Elastoplastic Deformations and Wave Propagation
,” Nonlinear Dyn.
, pp. 1
–16
.10.1007/s11071-022-07522-325.
Patil
,
D.
, and
Fred Higgs
,
C.
, 2018
, “
Experimental Investigations on the Coefficient of Restitution for Sphere–Thin Plate Elastoplastic Impact
,” J. Tribol.
,
140
(1
), p. 011406
.10.1115/1.403721226.
Yu
,
X.
,
Sun
,
Y.
,
Zhao
,
D.
, and
Wu
,
S.
, 2021
, “
A Revised Contact Stiffness Model of Rough Curved Surfaces Based on the Length Scale
,” Tribol. Int.
,
164
, p. 107206
.10.1016/j.triboint.2021.10720627.
Zhang
,
Z.
,
Xiao
,
Y.
,
Xie
,
Y.
, and
Su
,
Z.
, 2019
, “
Effects of Contact Between Rough Surfaces on the Dynamic Responses of Bolted Composite Joints: Multiscale Modeling and Numerical Simulation
,” Compos. Struct.
,
211
, pp. 13
–23
.10.1016/j.compstruct.2018.12.01928.
Lan
,
W.
,
Fan
,
S.
, and
Fan
,
S.
, 2021
, “
A Fractal Model of Elastic–Plastic Contact Between Rough Surfaces for a Low-Velocity Impact Process
,” Int. J. Comput. Methods
,
18
(09
), p. 2150039
.10.1142/S021987622150039029.
Mathis
,
A. T.
,
Balaji
,
N. N.
,
Kuether
,
R. J.
,
Brink
,
A. R.
,
Brake
,
M. R.
, and
Quinn
,
D. D.
, 2020
, “
A Review of Damping Models for Structures With Mechanical Joints
,” ASME Appl. Mech. Rev.
,
72
(4
), p. 040802
.10.1115/1.404770730.
Zhao
,
B.
,
Xu
,
H.
,
Lu
,
X.
,
Ma
,
X.
,
Shi
,
X.
, and
Dong
,
Q.
, 2019
, “
Contact Behaviors of a Power-Law Hardening Elastic–Plastic Asperity With Soft Coating Flattened by a Rigid Flat
,” Int. J. Mech. Sci.
,
152
, pp. 400
–410
.10.1016/j.ijmecsci.2019.01.01331.
Lu
,
X.
,
Huang
,
F.
,
Zhao
,
B.
, and
Keer
,
L. M.
, 2018
, “
Contact Behaviors of Coated Asperity With Power-Law Hardening Elastic–Plastic Substrate During Loading and Unloading Process
,” Int. J. Appl. Mech.
,
10
(3
), p. 1850034
.10.1142/S175882511850034532.
Jacobs
,
T. D. B.
, and
Martini
,
A.
, 2017
, “
Measuring and Understanding Contact Area at the Nanoscale: A Review
,” ASME Appl. Mech. Rev.
,
69
(6
), p. 060802
.10.1115/1.403813033.
Vishnubhotla
,
S. B.
,
Chen
,
R.
,
Khanal
,
S. R.
,
Hu
,
X.
,
Martini
,
A.
, and
Jacobs
,
T. D. B.
, 2019
, “
Matching Atomistic Simulations and In Situ Experiments to Investigate the Mechanics of Nanoscale Contact
,” Tribol. Lett.
,
67
(3
), pp. 1
–12
.10.1007/s11249-019-1210-734.
Broitman
,
E.
, 2017
, “
Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview
,” Tribol. Lett.
,
65
(1
), pp. 1
–18
.10.1007/s11249-016-0805-535.
Zhang
,
W.
,
Lu
,
Z.
,
Chen
,
Y.
, and
Zhang
,
Y.
, 2022
, “
Contact Analysis Between Rough Surfaces Considering the Size-Affected Deformation Behaviour of Multi-Scale Asperities
,” Tribol. Int.
,
172
, p. 107592
.10.1016/j.triboint.2022.10759236.
You
,
S.
,
Tang
,
J.
, and
Wen
,
Y.
, 2022
, “
Three-Dimensional Elastoplastic Contact Analysis of Rough Surface Considering a Micro-Scale Effect
,” ASME J. Tribol.
,
144
(1
), p. 011503
.10.1115/1.405073737.
Venugopalan
,
S.
, and
Nicola
,
L.
, 2019
, “
Indentation of a Plastically Deforming Metal Crystal With a Self-Affine Rigid Surface: A Dislocation Dynamics Study
,” Acta Mater.
,
165
, pp. 709
–721
.10.1016/j.actamat.2018.10.02038.
Venugopalan
,
S. P.
,
Irani
,
N.
, and
Nicola
,
L.
, 2019
, “
Plastic Contact of Self-Affine Surfaces: Persson's Theory Versus Discrete Dislocation Plasticity
,” J. Mech. Phys. Solids
,
132
, p. 103676
.10.1016/j.jmps.2019.07.01939.
Gujrati
,
A.
,
Khanal
,
S. R.
,
Pastewka
,
L.
, and
Jacobs
,
T. D. B.
, 2018
, “
Combining TEM, AFM, and Profilometry for Quantitative Topography Characterization Across All Scales
,” ACS Appl. Mater. Interfaces
,
10
(34
), pp. 29169
–29178
.10.1021/acsami.8b0989940.
Green
,
I.
, 2020
, “
Exact Spectral Moments and Differentiability of the Weierstrass-Mandelbrot Fractal Function
,” J. Tribol.
,
142
(4
), p. 041501
.10.1115/1.404545241.
Joe
,
J.
,
Barber
,
J. R.
, and
Raeymaekers
,
B.
, 2022
, “
A General Load–Displacement Relationship Between Random Rough Surfaces in Elastic, Non-Adhesive Contact, With Application in Metal Additive Manufacturing
,” Tribol. Lett.
,
70
(3
), p. 77
.10.1007/s11249-022-01618-y42.
Xu
,
Y.
, and
Jackson
,
R. L.
, 2017
, “
Statistical Models of Nearly Complete Elastic Rough Surface Contact-Comparison With Numerical Solutions
,” Tribol. Int.
,
105
, pp. 274
–291
.10.1016/j.triboint.2016.10.00343.
Pan
,
W.
,
Song
,
C.
,
Ling
,
L.
,
Qu
,
H.
, and
Wang
,
M.
, 2021
, “
Unloading Contact Mechanics Analysis of Elastic–Plastic Fractal Surface
,” Archive Appl. Mech.
,
91
(6
), pp. 2697
–2712
.10.1007/s00419-021-01918-044.
An
,
B.
,
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
, 2019
, “
Deterministic Elastic-Plastic Modelling of Rough Surface Contact Including Spectral Interpolation and Comparison to Theoretical Models
,” Tribol. Int.
,
135
, pp. 246
–258
.10.1016/j.triboint.2019.02.03945.
Xu
,
Y.
,
Jackson
,
R. L.
,
Chen
,
Y.
,
Zhang
,
A.
, and
Prorok
,
B. C.
, 2020
, “
A Comparison of Nanoscale Measurements With the Theoretical Models of Real and Nominal Contact Areas
,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
234
(11
), pp. 1735
–1745
.10.1177/135065012090518446.
Wang
,
X.
,
An
,
B.
,
Xu
,
Y.
, and
Jackson
,
R. L.
, 2020
, “
The Effect of Resolution on the Deterministic Finite Element Elastic-Plastic Rough Surface Contact Under Combined Normal and Tangential Loading
,” Tribol. Int.
,
144
, p. 106141
.10.1016/j.triboint.2019.10614147.
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
, 2017
, “
Elastic–Plastic Sinusoidal Waviness Contact Under Combined Normal and Tangential Loading
,” Tribol. Lett.
,
65
(2
), pp. 1
–15
.10.1007/s11249-017-0827-7 48.
Cohen
,
D.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2009
, “
The Effect of Surface Roughness on Static Friction and Junction Growth of an Elastic-Plastic Spherical Contact
,” ASME J. Tribol
,
131
(2
), p. 021404
.10.1115/1.307586649.
Kogut
,
L.
, and
Etsion
,
I.
, 2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,” J. Trib
,
126
(1
), pp. 34
–40
.10.1115/1.160948850.
Chu
,
N. R.
,
Jackson
,
R. L.
,
Wang
,
X.
,
Gangopadhyay
,
A.
, and
Ghaednia
,
H.
, 2021
, “
Evaluating Elastic-Plastic Wavy and Spherical Asperity-Based Statistical and Multi-Scale Rough Surface Contact Models With Deterministic Results
,” Materials
,
14
(14
), p. 3864
.10.3390/ma1414386451.
Xu
,
Y.
,
Chen
,
Y.
,
Zhang
,
A.
,
Jackson
,
R. L.
, and
Prorok
,
B. C.
, 2018
, “
A New Method for the Measurement of Real Area of Contact by the Adhesive Transfer of Thin Au Film
,” Tribol. Lett.
,
66
(1
), pp. 1
–20
.10.1007/s11249-018-0982-5 52.
Xu
,
Y.
,
Scheibert
,
J.
,
Gadegaard
,
N.
, and
Mulvihill
,
D. M.
, 2022
, “
An Asperity-Based Statistical Model for the Adhesive Friction of Elastic Nominally Flat Rough Contact Interfaces
,” J. Mech. Phys. Solids
,
164
, p. 104878
.10.1016/j.jmps.2022.10487853.
Papangelo
,
A.
,
Scheibert
,
J.
,
Sahli
,
R.
,
Pallares
,
G.
, and
Ciavarella
,
M.
, 2019
, “
Shear-Induced Contact Area Anisotropy Explained by a Fracture Mechanics Model
,” Phys. Rev. E
,
99
(5
), p. 53005
.10.1103/PhysRevE.99.05300554.
Ciavarella
,
M.
, and
Papangelo
,
A.
, 2020
, “
On the Degree of Irreversibility of Friction in Sheared Soft Adhesive Contacts
,” Tribol. Lett.
,
68
(3
), pp. 1
–9
.10.1007/s11249-020-01318-555.
Baker
,
A. J.
,
Vishnubhotla
,
S. B.
,
Chen
,
R.
,
Martini
,
A.
, and
Jacobs
,
T. D. B.
, 2022
, “
Origin of Pressure-Dependent Adhesion in Nanoscale Contacts
,” Nano Lett.
,
22
(14
), pp. 5954
–5960
.10.1021/acs.nanolett.2c0201656.
Saha
,
S.
,
Wynne
,
S.
, and
Jackson
,
R. L.
, 2021
, “
Electro-Thermo-Mechanical Contact Analysis Considering Temperature Dependent Material Properties and Electrical Contact Resistance Determination
,” IEEE 66th Holm Conference on Electrical Contacts (HLM)
, San Antonio, TX, Oct. 24–27, pp. 8
–15
.10.1109/HLM51431.2021.967113857.
Wang
,
K.
,
Wang
,
Y.
,
Yue
,
X.
, and
Cai
,
W.
, 2021
, “
Multiphysics Modeling and Uncertainty Quantification of Tribocorrosion in Aluminum Alloys
,” Corros. Sci.
,
178
, p. 109095
.10.1016/j.corsci.2020.10909558.
Naeimi
,
M.
,
Li
,
S.
,
Li
,
Z.
,
Wu
,
J.
,
Petrov
,
R. H.
,
Sietsma
,
J.
, and
Dollevoet
,
R.
, 2018
, “
Thermomechanical Analysis of the Wheel-Rail Contact Using a Coupled Modelling Procedure
,” Tribol. Int.
,
117
, pp. 250
–260
.10.1016/j.triboint.2017.09.01059.
Vakis
,
A. I.
,
Yastrebov
,
V. A.
,
Scheibert
,
J.
,
Nicola
,
L.
,
Dini
,
D.
,
Minfray
,
C.
,
Almqvist
,
A.
, et al., 2018
, “
Modeling and Simulation in Tribology Across Scales: An Overview
,” Tribol. Int.
,
125
, pp. 169
–199
.10.1016/j.triboint.2018.02.005Copyright © 2022 by ASME
You do not currently have access to this content.