Abstract

It has been 5 years since this review of elastic-plastic contact mechanics was published. The area still remains very active, and many advancements have been made since then. This discussion summarizes these advances and points out what might be considered the most significant ones. In some cases, experimental measurements have confirmed previous theoretical predictions. In most cases, the models of contact mechanics have increased in complexity in order to improve predictions for real applications. As a fundamental area, contact mechanics will undoubtedly remain active as its implementation is often required for new applications of technology to succeed.

References

1.
Pore
,
T.
,
Thorat
,
S. G.
, and
Nema
,
A. A.
,
2021
, “
Review of Contact Modelling in Nonlinear Finite Element Analysis
,”
Mater. Today: Proc.
,
47
, pp.
2436
2440
.10.1016/j.matpr.2021.04.504
2.
Xu
,
Y.
, and
Jackson
,
R. L.
,
2019
, “
Boundary Element Method (BEM) Applied to the Rough Surface Contact vs. BEM in Computational Mechanics
,”
Friction
,
7
(
4
), pp.
359
371
.10.1007/s40544-018-0229-3
3.
Jackson
,
R. L.
,
Xu
,
Y.
,
Saha
,
S.
, and
Schulze
,
K. D.
,
2021
, “
Elastic Rough Surface Contact and the Root Mean Square Slope of Measured Surfaces Over Multiple Scales
,”
Fractal Fractional
,
5
(
2
), p.
44
.10.3390/fractalfract5020044
4.
Tiwari
,
A.
,
Almqvist
,
A.
, and
Persson
,
B. N. J.
,
2020
, “
Plastic Deformation of Rough Metallic Surfaces
,”
Tribol. Lett.
,
68
(
4
), p.
129
.10.1007/s11249-020-01368-9
5.
Taylor
,
R. I.
,
2022
, “
Rough Surface Contact Modelling: A Review
,”
Lubricants
,
10
(
5
), p.
98
.10.3390/lubricants10050098
6.
Quicksall
,
J. J.
,
Jackson
,
R. L.
, and
Green
,
I.
,
2004
, “
Elasto-Plastic Hemispherical Contact Models for Various Mechanical Properties
,”
Proc. Inst. Mech. Eng., Part J
,
218
(
4
), pp.
313
322
.10.1243/1350650041762604
7.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
8.
Xu
,
K.
,
Chu
,
N. R.
, and
Jackson
,
R. L.
,
2021
, “
An Investigation of the Elastic Cylindrical Line Contact Equations for Plane Strain and Stress Considering Friction
,”
Proc. Inst. Mech. Eng., Part J
, 236(9), pp.
1889
1897
.10.1177/1350650121992178
9.
Guo
,
T.
,
Hua
,
X.
,
Yan
,
Z.
,
Meng
,
L.
, and
Peng
,
L.
,
2021
, “
Study of a Parabolic Cylinder Elastic-Plastic Contact Model
,”
Adv. Mech. Eng.
,
13
(
10
), pp.
1
12
.10.1177/16878140211054982
10.
Jackson
,
R. L.
,
2018
, “
A Solution of Rigid Perfectly Plastic Cylindrical Indentation in Plane Strain and Comparison to Elastic-Plastic Finite Element Predictions With Hardening
,”
ASME J. Appl. Mech.
,
85
(
2
), p.
024501
.10.1115/1.4038495
11.
Ghaednia
,
H.
,
Mifflin
,
G.
,
Lunia
,
P.
,
O'Neill
,
E. O.
, and
Brake
,
M. R. W.
,
2020
, “
Strain Hardening From Elastic-Perfectly Plastic to Perfectly Elastic Indentation Single Asperity Contact
,”
Front. Mech. Eng.
,
6
(
60
), pp.
1
15
.10.3389/fmech.2020.00060
12.
Brutti
,
C.
,
2021
, “
A Theoretical Model for Elastic-Perfectly Plastic Flat Cylindrical Punch Indentation
,”
Mech. Mater.
,
155
, p.
103770
.10.1016/j.mechmat.2021.103770
13.
Midawi
,
A. R. H.
,
Simha
,
C. H. M.
,
Gesing
,
M. A.
, and
Gerlich
,
A. P.
,
2017
, “
Elastic-Plastic Property Evaluation Using a Nearly Flat Instrumented Indenter
,”
Int. J. Solids Struct.
,
104
, pp.
81
91
.10.1016/j.ijsolstr.2016.09.036
14.
Larsson
,
P.-L.
,
2018
, “
On the Variation of Hardness Due to Uniaxial and Equi-Biaxial Residual Surface Stresses at Elastic–Plastic Indentation
,”
J. Mater. Eng. Perform.
,
27
(
6
), pp.
3168
3173
.10.1007/s11665-018-3393-8
15.
Argatov
,
I.
,
2022
, “
A Comparison of General Solutions to the Non-Axisymmetric Frictionless Contact Problem With a Circular Area of Contact: When the Symmetry Does Not Matter
,”
Symmetry
,
14
(
6
), p.
1083
.10.3390/sym14061083
16.
Pintaude
,
G.
,
2022
, “
Hardness as an Indicator of Material Strength: A Critical Review
,”
Crit. Rev. Solid State Mater. Sci.
, pp.
1
19
.10.1080/10408436.2022.2085659
17.
Juettner
,
M.
,
Bartz
,
M.
,
Tremmel
,
S.
,
Correns
,
M.
, and
Wartzack
,
S.
,
2022
, “
Edge Pressures Obtained Using FEM and Half-Space: A Study of Truncated Contact Ellipses
,”
Lubricants
,
10
(
6
), p.
107
.10.3390/lubricants10060107
18.
Zhang
,
H.
, and
Etsion
,
I.
,
2021
, “
Evolution of Adhesive Wear and Friction in Elastic-Plastic Spherical Contact
,”
Wear
,
478
, p.
203915
.10.1016/j.wear.2021.203915
19.
Zhang
,
H.
, and
Etsion
,
I.
,
2022
, “
An Advanced Efficient Model for Adhesive Wear in Elastic—Plastic Spherical Contact
,”
Friction
,
10
(
8
), pp.
1276
1284
.10.1007/s40544-021-0569-2
20.
Aghababaei
,
R.
,
Brink
,
T.
, and
Molinari
,
J.-F.
,
2018
, “
Asperity-Level Origins of Transition From Mild to Severe Wear
,”
Phys. Rev. Lett.
,
120
(
18
), p.
186105
.10.1103/PhysRevLett.120.186105
21.
Salari
,
S.
, and
Beheshti
,
A.
,
2021
, “
Asperity-Based Contact and Static Friction With Provision for Creep: A Review
,”
Surf. Interfaces
,
24
, p.
101144
.10.1016/j.surfin.2021.101144
22.
Alamos
,
F. J.
,
Philo
,
M.
,
Go
,
D. B.
, and
Schmid
,
S. R.
,
2021
, “
Asperity Contact Under Creep Conditions
,”
Tribol. Int.
,
160
, p.
107039
.10.1016/j.triboint.2021.107039
23.
Green
,
I.
,
2018
, “
An Elastic-Plastic Finite Element Analysis of Two Interfering Hemispheres Sliding in Frictionless Contact
,”
Phys. Sci. Int. J.
,
19
(
1
), pp.
1
34
.10.9734/PSIJ/2018/42783
24.
Green
,
I.
,
2022
, “
The Prediction of the Coefficient of Restitution Between Impacting Spheres and Finite Thickness Plates Undergoing Elastoplastic Deformations and Wave Propagation
,”
Nonlinear Dyn.
, pp.
1
16
.10.1007/s11071-022-07522-3
25.
Patil
,
D.
, and
Fred Higgs
,
C.
,
2018
, “
Experimental Investigations on the Coefficient of Restitution for Sphere–Thin Plate Elastoplastic Impact
,”
J. Tribol.
,
140
(
1
), p.
011406
.10.1115/1.4037212
26.
Yu
,
X.
,
Sun
,
Y.
,
Zhao
,
D.
, and
Wu
,
S.
,
2021
, “
A Revised Contact Stiffness Model of Rough Curved Surfaces Based on the Length Scale
,”
Tribol. Int.
,
164
, p.
107206
.10.1016/j.triboint.2021.107206
27.
Zhang
,
Z.
,
Xiao
,
Y.
,
Xie
,
Y.
, and
Su
,
Z.
,
2019
, “
Effects of Contact Between Rough Surfaces on the Dynamic Responses of Bolted Composite Joints: Multiscale Modeling and Numerical Simulation
,”
Compos. Struct.
,
211
, pp.
13
23
.10.1016/j.compstruct.2018.12.019
28.
Lan
,
W.
,
Fan
,
S.
, and
Fan
,
S.
,
2021
, “
A Fractal Model of Elastic–Plastic Contact Between Rough Surfaces for a Low-Velocity Impact Process
,”
Int. J. Comput. Methods
,
18
(
09
), p.
2150039
.10.1142/S0219876221500390
29.
Mathis
,
A. T.
,
Balaji
,
N. N.
,
Kuether
,
R. J.
,
Brink
,
A. R.
,
Brake
,
M. R.
, and
Quinn
,
D. D.
,
2020
, “
A Review of Damping Models for Structures With Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
72
(
4
), p.
040802
.10.1115/1.4047707
30.
Zhao
,
B.
,
Xu
,
H.
,
Lu
,
X.
,
Ma
,
X.
,
Shi
,
X.
, and
Dong
,
Q.
,
2019
, “
Contact Behaviors of a Power-Law Hardening Elastic–Plastic Asperity With Soft Coating Flattened by a Rigid Flat
,”
Int. J. Mech. Sci.
,
152
, pp.
400
410
.10.1016/j.ijmecsci.2019.01.013
31.
Lu
,
X.
,
Huang
,
F.
,
Zhao
,
B.
, and
Keer
,
L. M.
,
2018
, “
Contact Behaviors of Coated Asperity With Power-Law Hardening Elastic–Plastic Substrate During Loading and Unloading Process
,”
Int. J. Appl. Mech.
,
10
(
3
), p.
1850034
.10.1142/S1758825118500345
32.
Jacobs
,
T. D. B.
, and
Martini
,
A.
,
2017
, “
Measuring and Understanding Contact Area at the Nanoscale: A Review
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060802
.10.1115/1.4038130
33.
Vishnubhotla
,
S. B.
,
Chen
,
R.
,
Khanal
,
S. R.
,
Hu
,
X.
,
Martini
,
A.
, and
Jacobs
,
T. D. B.
,
2019
, “
Matching Atomistic Simulations and In Situ Experiments to Investigate the Mechanics of Nanoscale Contact
,”
Tribol. Lett.
,
67
(
3
), pp.
1
12
.10.1007/s11249-019-1210-7
34.
Broitman
,
E.
,
2017
, “
Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview
,”
Tribol. Lett.
,
65
(
1
), pp.
1
18
.10.1007/s11249-016-0805-5
35.
Zhang
,
W.
,
Lu
,
Z.
,
Chen
,
Y.
, and
Zhang
,
Y.
,
2022
, “
Contact Analysis Between Rough Surfaces Considering the Size-Affected Deformation Behaviour of Multi-Scale Asperities
,”
Tribol. Int.
,
172
, p.
107592
.10.1016/j.triboint.2022.107592
36.
You
,
S.
,
Tang
,
J.
, and
Wen
,
Y.
,
2022
, “
Three-Dimensional Elastoplastic Contact Analysis of Rough Surface Considering a Micro-Scale Effect
,” ASME
J. Tribol.
,
144
(
1
), p.
011503
.10.1115/1.4050737
37.
Venugopalan
,
S.
, and
Nicola
,
L.
,
2019
, “
Indentation of a Plastically Deforming Metal Crystal With a Self-Affine Rigid Surface: A Dislocation Dynamics Study
,”
Acta Mater.
,
165
, pp.
709
721
.10.1016/j.actamat.2018.10.020
38.
Venugopalan
,
S. P.
,
Irani
,
N.
, and
Nicola
,
L.
,
2019
, “
Plastic Contact of Self-Affine Surfaces: Persson's Theory Versus Discrete Dislocation Plasticity
,”
J. Mech. Phys. Solids
,
132
, p.
103676
.10.1016/j.jmps.2019.07.019
39.
Gujrati
,
A.
,
Khanal
,
S. R.
,
Pastewka
,
L.
, and
Jacobs
,
T. D. B.
,
2018
, “
Combining TEM, AFM, and Profilometry for Quantitative Topography Characterization Across All Scales
,”
ACS Appl. Mater. Interfaces
,
10
(
34
), pp.
29169
29178
.10.1021/acsami.8b09899
40.
Green
,
I.
,
2020
, “
Exact Spectral Moments and Differentiability of the Weierstrass-Mandelbrot Fractal Function
,”
J. Tribol.
,
142
(
4
), p.
041501
.10.1115/1.4045452
41.
Joe
,
J.
,
Barber
,
J. R.
, and
Raeymaekers
,
B.
,
2022
, “
A General Load–Displacement Relationship Between Random Rough Surfaces in Elastic, Non-Adhesive Contact, With Application in Metal Additive Manufacturing
,”
Tribol. Lett.
,
70
(
3
), p.
77
.10.1007/s11249-022-01618-y
42.
Xu
,
Y.
, and
Jackson
,
R. L.
,
2017
, “
Statistical Models of Nearly Complete Elastic Rough Surface Contact-Comparison With Numerical Solutions
,”
Tribol. Int.
,
105
, pp.
274
291
.10.1016/j.triboint.2016.10.003
43.
Pan
,
W.
,
Song
,
C.
,
Ling
,
L.
,
Qu
,
H.
, and
Wang
,
M.
,
2021
, “
Unloading Contact Mechanics Analysis of Elastic–Plastic Fractal Surface
,”
Archive Appl. Mech.
,
91
(
6
), pp.
2697
2712
.10.1007/s00419-021-01918-0
44.
An
,
B.
,
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2019
, “
Deterministic Elastic-Plastic Modelling of Rough Surface Contact Including Spectral Interpolation and Comparison to Theoretical Models
,”
Tribol. Int.
,
135
, pp.
246
258
.10.1016/j.triboint.2019.02.039
45.
Xu
,
Y.
,
Jackson
,
R. L.
,
Chen
,
Y.
,
Zhang
,
A.
, and
Prorok
,
B. C.
,
2020
, “
A Comparison of Nanoscale Measurements With the Theoretical Models of Real and Nominal Contact Areas
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
234
(
11
), pp.
1735
1745
.10.1177/1350650120905184
46.
Wang
,
X.
,
An
,
B.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2020
, “
The Effect of Resolution on the Deterministic Finite Element Elastic-Plastic Rough Surface Contact Under Combined Normal and Tangential Loading
,”
Tribol. Int.
,
144
, p.
106141
.10.1016/j.triboint.2019.106141
47.
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2017
, “
Elastic–Plastic Sinusoidal Waviness Contact Under Combined Normal and Tangential Loading
,”
Tribol. Lett.
,
65
(
2
), pp.
1
15
.10.1007/s11249-017-0827-7
48.
Cohen
,
D.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2009
, “
The Effect of Surface Roughness on Static Friction and Junction Growth of an Elastic-Plastic Spherical Contact
,”
ASME J. Tribol
,
131
(
2
), p.
021404
.10.1115/1.3075866
49.
Kogut
,
L.
, and
Etsion
,
I.
,
2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
J. Trib
,
126
(
1
), pp.
34
40
.10.1115/1.1609488
50.
Chu
,
N. R.
,
Jackson
,
R. L.
,
Wang
,
X.
,
Gangopadhyay
,
A.
, and
Ghaednia
,
H.
,
2021
, “
Evaluating Elastic-Plastic Wavy and Spherical Asperity-Based Statistical and Multi-Scale Rough Surface Contact Models With Deterministic Results
,”
Materials
,
14
(
14
), p.
3864
.10.3390/ma14143864
51.
Xu
,
Y.
,
Chen
,
Y.
,
Zhang
,
A.
,
Jackson
,
R. L.
, and
Prorok
,
B. C.
,
2018
, “
A New Method for the Measurement of Real Area of Contact by the Adhesive Transfer of Thin Au Film
,”
Tribol. Lett.
,
66
(
1
), pp.
1
20
.10.1007/s11249-018-0982-5
52.
Xu
,
Y.
,
Scheibert
,
J.
,
Gadegaard
,
N.
, and
Mulvihill
,
D. M.
,
2022
, “
An Asperity-Based Statistical Model for the Adhesive Friction of Elastic Nominally Flat Rough Contact Interfaces
,”
J. Mech. Phys. Solids
,
164
, p.
104878
.10.1016/j.jmps.2022.104878
53.
Papangelo
,
A.
,
Scheibert
,
J.
,
Sahli
,
R.
,
Pallares
,
G.
, and
Ciavarella
,
M.
,
2019
, “
Shear-Induced Contact Area Anisotropy Explained by a Fracture Mechanics Model
,”
Phys. Rev. E
,
99
(
5
), p.
53005
.10.1103/PhysRevE.99.053005
54.
Ciavarella
,
M.
, and
Papangelo
,
A.
,
2020
, “
On the Degree of Irreversibility of Friction in Sheared Soft Adhesive Contacts
,”
Tribol. Lett.
,
68
(
3
), pp.
1
9
.10.1007/s11249-020-01318-5
55.
Baker
,
A. J.
,
Vishnubhotla
,
S. B.
,
Chen
,
R.
,
Martini
,
A.
, and
Jacobs
,
T. D. B.
,
2022
, “
Origin of Pressure-Dependent Adhesion in Nanoscale Contacts
,”
Nano Lett.
,
22
(
14
), pp.
5954
5960
.10.1021/acs.nanolett.2c02016
56.
Saha
,
S.
,
Wynne
,
S.
, and
Jackson
,
R. L.
,
2021
, “
Electro-Thermo-Mechanical Contact Analysis Considering Temperature Dependent Material Properties and Electrical Contact Resistance Determination
,”
IEEE 66th Holm Conference on Electrical Contacts (HLM)
, San Antonio, TX, Oct. 24–27, pp.
8
15
.10.1109/HLM51431.2021.9671138
57.
Wang
,
K.
,
Wang
,
Y.
,
Yue
,
X.
, and
Cai
,
W.
,
2021
, “
Multiphysics Modeling and Uncertainty Quantification of Tribocorrosion in Aluminum Alloys
,”
Corros. Sci.
,
178
, p.
109095
.10.1016/j.corsci.2020.109095
58.
Naeimi
,
M.
,
Li
,
S.
,
Li
,
Z.
,
Wu
,
J.
,
Petrov
,
R. H.
,
Sietsma
,
J.
, and
Dollevoet
,
R.
,
2018
, “
Thermomechanical Analysis of the Wheel-Rail Contact Using a Coupled Modelling Procedure
,”
Tribol. Int.
,
117
, pp.
250
260
.10.1016/j.triboint.2017.09.010
59.
Vakis
,
A. I.
,
Yastrebov
,
V. A.
,
Scheibert
,
J.
,
Nicola
,
L.
,
Dini
,
D.
,
Minfray
,
C.
,
Almqvist
,
A.
, et al.,
2018
, “
Modeling and Simulation in Tribology Across Scales: An Overview
,”
Tribol. Int.
,
125
, pp.
169
199
.10.1016/j.triboint.2018.02.005
You do not currently have access to this content.