Abstract

Origami has emerged as a powerful mechanism for designing functional foldable and deployable structures. Among various origami patterns, a large class of origami exhibits rotational symmetry, which possesses the advantages of elegant geometric shapes, axisymmetric contraction/expansion, and omnidirectional deployability, etc. Due to these merits, origami with rotational symmetry has found widespread applications in various engineering fields such as foldable emergency shelters, deformable wheels, deployable medical stents, and deployable solar panels. To guide the rational design of origami-based deployable structures and functional devices, numerous works in recent years have been devoted to understanding the geometric designs and mechanical behaviors of rotationally symmetric origami. In this review, we classify origami structures with rotational symmetry into three categories according to the dimensional transitions between their deployed and folded states as three-dimensional to three-dimensional, three-dimensional to two-dimensional, and two-dimensional to two-dimensional. Based on these three categories, we systematically review the geometric designs of their origami patterns and the mechanical behaviors during their folding motions. We summarize the existing theories and numerical methods for analyzing and designing these origami structures. Also, potential directions and future challenges of rotationally symmetric origami mechanics and applications are discussed. This review can provide guidelines for origami with rotational symmetry to achieve more functional applications across a wide range of length scales.

References

1.
Callens
,
S. J.
, and
Zadpoor
,
A. A.
,
2018
, “
From Flat Sheets to Curved Geometries: Origami and Kirigami Approaches
,”
Mater. Today
,
21
(
3
), pp.
241
264
.10.1016/j.mattod.2017.10.004
2.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.10.1038/nmat4232
3.
Cai
,
J.
,
Deng
,
X.
,
Zhou
,
Y.
,
Feng
,
J.
, and
Tu
,
Y.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
.10.1115/1.4030158
4.
Faber
,
J. A.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
.10.1126/science.aap7753
5.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2019
, “
Invariant and Smooth Limit of Discrete Geometry Folded From Bistable Origami Leading to Multistable Metasurfaces
,”
Nat. Commun.
,
10
(
1
), pp.
1
10
.10.1038/s41467-019-11935-x
6.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B. G.-G.
, and
Van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
), p.
055503
.10.1103/PhysRevLett.114.055503
7.
Feng
,
F.
,
Plucinsky
,
P.
, and
James
,
R. D.
,
2020
, “
Helical Miura Origami
,”
Phys. Rev. E
,
101
(
3
), p.
033002
.10.1103/PhysRevE.101.033002
8.
Fang
,
H.
,
Wang
,
K.
, and
Li
,
S.
,
2017
, “
Asymmetric Energy Barrier and Mechanical Diode Effect From Folding Multi-Stable Stacked-Origami
,”
Extreme Mech. Lett.
,
17
, pp.
7
15
.10.1016/j.eml.2017.09.008
9.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.10.1103/PhysRevLett.110.215501
10.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
.10.1103/PhysRevLett.114.185502
11.
Kamrava
,
S.
,
Mousanezhad
,
D.
,
Ebrahimi
,
H.
,
Ghosh
,
R.
, and
Vaziri
,
A.
,
2017
, “
Origami-Based Cellular Metamaterial With Auxetic, Bistable, and Self-Locking Properties
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
.10.1038/srep46046
12.
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2018
, “
Bioinspired Dual-Stiffness Origami
,”
Sci. Rob.
,
3
(
20
), p.
eaau0275
.10.1126/scirobotics.aau0275
13.
Jamalimehr
,
A.
,
Mirzajanzadeh
,
M.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2022
, “
Rigidly Flat-Foldable Class of Lockable Origami-Inspired Metamaterials With Topological Stiff States
,”
Nat. Commun.
,
13
(
1
), pp.
1
14
.10.1038/s41467-022-29484-1
14.
Lv
,
C.
,
Krishnaraju
,
D.
,
Konjevod
,
G.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
,
4
(
1
), pp.
1
6
.10.1038/srep05979
15.
Ma
,
J.
,
Chai
,
S.
, and
Chen
,
Y.
,
2022
, “
Geometric Design, Deformation Mode, and Energy Absorption of Patterned Thin-Walled Structures
,”
Mech. Mater.
,
168
, p.
104269
.10.1016/j.mechmat.2022.104269
16.
Yang
,
K.
,
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2016
, “
Energy Absorption of Thin-Walled Tubes With Pre-Folded Origami Patterns: Numerical Simulation and Experimental Verification
,”
Thin-Walled Struct.
,
103
, pp.
33
44
.10.1016/j.tws.2016.02.007
17.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci.
,
112
(
40
), pp.
12321
12326
.10.1073/pnas.1509465112
18.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K. W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.10.1002/adma.201805282
19.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.10.1038/s41586-021-03407-4
20.
Reis
,
P. M.
,
López Jiménez
,
F.
, and
Marthelot
,
J.
,
2015
, “
Transforming Architectures Inspired by Origami
,”
Proc. Natl. Acad. Sci.
,
112
(
40
), pp.
12234
12235
.10.1073/pnas.1516974112
21.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng.: A
,
419
(
1–2
), pp.
131
137
.10.1016/j.msea.2005.12.016
22.
Kim
,
S.-H.
,
Lee
,
H. R.
,
Yu
,
S. J.
,
Han
,
M.-E.
,
Lee
,
D. Y.
,
Kim
,
S. Y.
,
Ahn
,
H.-J.
,
Han
,
M.-J.
,
Lee
,
T.-I.
,
Kim
,
T.-S.
,
Kwon
,
S. K.
,
Im
,
S. G.
, and
Hwang
,
N. S.
,
2015
, “
Hydrogel-Laden Paper Scaffold System for Origami-Based Tissue Engineering
,”
Proc. Natl. Acad. Sci.
,
112
(
50
), pp.
15426
15431
.10.1073/pnas.1504745112
23.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assisted Radiology Surg.
,
12
(
11
), pp.
2023
2032
.10.1007/s11548-017-1545-1
24.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Sang‐Hoon Lee
,
D.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.10.1002/advs.202000636
25.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.10.1038/s41578-018-0009-8
26.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci.
,
118
(
36
), p.
e2110023118
.10.1073/pnas.2110023118
27.
Kim
,
S.-J.
,
Lee
,
D.-Y.
,
Jung
,
G.-P.
, and
Cho
,
K.-J.
,
2018
, “
An Origami-Inspired, Self-Locking Robotic Arm That Can Be Folded Flat
,”
Sci. Rob.
,
3
(
16
), p.
eaar2915
.10.1126/scirobotics.aar2915
28.
Chen
,
Q.
,
Feng
,
F.
,
Lv
,
P.
, and
Duan
,
H.
,
2022
, “
Origami Spring-Inspired Shape Morphing for Flexible Robotics
,”
Soft Rob.
,
9
(
4
), pp.
798
806
.10.1089/soro.2021.0030
29.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.10.1126/science.1252610
30.
Miyashita
,
S.
,
Guitron
,
S.
,
Ludersdorfer
,
M.
,
Sung
,
C. R.
, and
Rus
,
D.
, “
An Untethered Miniature Origami Robot That Self-Folds, Walks, Swims, and Degrades
,”
Proc. 2015 IEEE International Conference on Robotics and Automation
(
ICRA
),
Seattle, WA, May 26–30, pp.
1490
1496
.10.1109/ICRA.2015.7139386
31.
Overvelde
,
J. T.
,
De Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
(
1
), pp.
1
8
.10.1038/ncomms10929
32.
Liu
,
B.
,
Silverberg
,
J. L.
,
Evans
,
A. A.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hull
,
T. C.
, and
Cohen
,
I.
,
2018
, “
Topological Kinematics of Origami Metamaterials
,”
Nat. Phys.
,
14
(
8
), pp.
811
815
.10.1038/s41567-018-0150-8
33.
Babaee
,
S.
,
Overvelde
,
J. T.
,
Chen
,
E. R.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2016
, “
Reconfigurable Origami-Inspired Acoustic Waveguides
,”
Sci. Adv.
,
2
(
11
), p.
e1601019
.10.1126/sciadv.1601019
34.
Zhai
,
Z.
,
Wang
,
Y.
,
Lin
,
K.
,
Wu
,
L.
, and
Jiang
,
H.
,
2020
, “
In Situ Stiffness Manipulation Using Elegant Curved Origami
,”
Sci. Adv.
,
6
(
47
), p.
eabe2000
.10.1126/sciadv.abe2000
35.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.10.1126/science.1252876
36.
Fang
,
H.
,
Chu
,
S. C. A.
,
Xia
,
Y.
, and
Wang
,
K. W.
,
2018
, “
Programmable Self‐Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
.10.1002/adma.201706311
37.
Zhai
,
Z.
,
Wu
,
L.
, and
Jiang
,
H.
,
2021
, “
Mechanical Metamaterials Based on Origami and Kirigami
,”
Appl. Phys. Rev.
,
8
(
4
), p.
041319
.10.1063/5.0051088
38.
Chen
,
T.
,
Bilal
,
O. R.
,
Lang
,
R.
,
Daraio
,
C.
, and
Shea
,
K.
,
2019
, “
Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064069
.10.1103/PhysRevApplied.11.064069
39.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.10.1115/1.4025372
40.
Shah
,
S. I. H.
, and
Lim
,
S.
,
2021
, “
Review on Recent Origami Inspired Antennas From Microwave to Terahertz Regime
,”
Mater. Des.
,
198
, p.
109345
.10.1016/j.matdes.2020.109345
41.
Xue
,
Z.
,
Song
,
H.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2020
, “
Mechanically‐Guided Structural Designs in Stretchable Inorganic Electronics
,”
Adv. Mater.
,
32
(
15
), p.
1902254
.10.1002/adma.201902254
42.
Shi
,
Y.
,
Zhang
,
F.
,
Nan
,
K.
,
Wang
,
X.
,
Wang
,
J.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Luan
,
H.
,
Hwang
,
K.-C.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Zhang
,
Y.
,
2017
, “
Plasticity-Induced Origami for Assembly of Three Dimensional Metallic Structures Guided by Compressive Buckling
,”
Extreme Mech. Lett.
,
11
, pp.
105
110
.10.1016/j.eml.2016.11.008
43.
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Mechanics of Stretchable Batteries and Supercapacitors
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
190
199
.10.1016/j.cossms.2015.01.002
44.
Yan
,
Z.
,
Han
,
M.
,
Yang
,
Y.
,
Nan
,
K.
,
Luan
,
H.
,
Luo
,
Y.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Deterministic Assembly of 3D Mesostructures in Advanced Materials Via Compressive Buckling: A Short Review of Recent Progress
,”
Extreme Mech. Lett.
,
11
, pp.
96
104
.10.1016/j.eml.2016.12.006
45.
Ning
,
X.
,
Wang
,
X.
,
Zhang
,
Y.
,
Yu
,
X.
,
Choi
,
D.
,
Zheng
,
N.
,
Kim
,
D. S.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Assembly of Advanced Materials Into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review
,”
Adv. Mater. Interfaces
,
5
(
13
), p.
1800284
.10.1002/admi.201800284
46.
Yan
,
Z.
,
Zhang
,
F.
,
Wang
,
J.
,
Liu
,
F.
,
Guo
,
X.
,
Nan
,
K.
,
Lin
,
Q.
,
Gao
,
M.
,
Xiao
,
D.
,
Shi
,
Y.
,
Qiu
,
Y.
,
Luan
,
H.
,
Kim
,
J. H.
,
Wang
,
Y.
,
Luo
,
H.
,
Han
,
M.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Controlled Mechanical Buckling for Origami‐Inspired Construction of 3D Microstructures in Advanced Materials
,”
Adv. Funct. Mater.
,
26
(
16
), pp.
2629
2639
.10.1002/adfm.201504901
47.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth's Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-Ori
,”
Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM
, Ithaca, NY, May 28–31, pp.
1
4
.https://www.academia.edu/38138421/Natural_twist_buckling_in_shells_from_the_hawkmoths_bellows_to_the_deployable_Kresling_pattern_and_cylindrical_Miura_ori
48.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
472
(
2190
), p.
20150846
.10.1098/rspa.2015.0846
49.
Kawasaki
,
T.
, and
Yoshida
,
M.
,
1988
, “
Crystallographic Flat Origamis
,”
Memoirs Faculty Sci., Kyushu Univ. Ser. A, Math.
,
42
(
2
), pp.
153
157
.10.2206/kyushumfs.42.153
50.
Ze
,
Q.
,
Wu
,
S.
,
Dai
,
J.
,
Leanza
,
S.
,
Ikeda
,
G.
,
Yang
,
P. C.
,
Iaccarino
,
G.
, and
Zhao
,
R. R.
,
2022
, “
Spinning-Enabled Wireless Amphibious Origami Millirobot
,”
Nat. Commun.
,
13
(
1
), p.
3118
.10.1038/s41467-022-30802-w
51.
Ze
,
Q.
,
Wu
,
S.
,
Nishikawa
,
J.
,
Dai
,
J.
,
Sun
,
Y.
,
Leanza
,
S.
,
Zemelka
,
C.
,
Novelino
,
L. S.
,
Paulino
,
G. H.
, and
Zhao
,
R. R.
,
2022
, “
Soft Robotic Origami Crawler
,”
Sci. Adv.
,
8
(
13
), p.
eabm7834
.10.1126/sciadv.abm7834
52.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.10.1088/1361-665X/aa721e
53.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
430
438
.10.1109/TMECH.2012.2210239
54.
Lee
,
D.-Y.
,
Kim
,
J.-K.
,
Sohn
,
C.-Y.
,
Heo
,
J.-M.
, and
Cho
,
K.-J.
,
2021
, “
High–Load Capacity Origami Transformable Wheel
,”
Sci. Rob.
,
6
(
53
), p.
eabe0201
.10.1126/scirobotics.abe0201
55.
Lee
,
D.-Y.
,
Kim
,
J.-S.
,
Kim
,
S.-R.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2013
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,”
ASME
Paper No. DETC2013-13016.10.1115/DETC2013-13016
56.
Wilson
,
L.
,
Pellegrino
,
S.
, and
Danner
,
R.
, “
Origami Sunshield Concepts for Space Telescopes
,”
Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Boston, MA, Apr. 8–11, p.
1594
.10.2514/6.2013-1594
57.
Guest
,
S.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.10.1016/0094-5765(96)00009-4
58.
Mahadevan
,
L.
, and
Rica
,
S.
,
2005
, “
Self-Organized Origami
,”
Science
,
307
(
5716
), pp.
1740
1740
.10.1126/science.1105169
59.
Kresling
,
B.
,
2012
, “
Origami-Structures in Nature: Lessons in Designing “Smart” Materials
,”
MRS Online Proceedings Library (OPL)
, p.
1420
.
60.
Kim
,
W.
,
Byun
,
J.
,
Kim
,
J.-K.
,
Choi
,
W.-Y.
,
Jakobsen
,
K.
,
Jakobsen
,
J.
,
Lee
,
D.-Y.
, and
Cho
,
K.-J.
,
2019
, “
Bioinspired Dual-Morphing Stretchable Origami
,”
Sci. Rob.
,
4
(
36
), p.
eaay3493
.10.1126/scirobotics.aay3493
61.
Dudte
,
L. H.
,
Choi
,
G. P.
, and
Mahadevan
,
L.
,
2021
, “
An Additive Algorithm for Origami Design
,”
Proc. Natl. Acad. Sci.
,
118
(
21
), p.
e2019241118
.10.1073/pnas.2019241118
62.
Dieleman
,
P.
,
Vasmel
,
N.
,
Waitukaitis
,
S.
, and
van Hecke
,
M.
,
2020
, “
Jigsaw Puzzle Design of Pluripotent Origami
,”
Nat. Phys.
,
16
(
1
), pp.
63
68
.10.1038/s41567-019-0677-3
63.
Lang
,
R. J.
,
2012
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
CRC Press
, Boca Raton, FL.
64.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
, New York.
65.
Brunck
,
V.
,
Lechenault
,
F.
,
Reid
,
A.
, and
Adda-Bedia
,
M.
,
2016
, “
Elastic Theory of Origami-Based Metamaterials
,”
Phys. Rev. E
,
93
(
3
), p.
033005
.10.1103/PhysRevE.93.033005
66.
Maden
,
F.
,
Korkmaz
,
K.
, and
Akgün
,
Y.
,
2011
, “
A Review of Planar Scissor Structural Mechanisms: Geometric Principles and Design Methods
,”
Archit. Sci. Rev.
,
54
(
3
), pp.
246
257
.10.1080/00038628.2011.590054
67.
Hanaor
,
A.
, and
Levy
,
R.
,
2001
, “
Evaluation of Deployable Structures for Space Enclosures
,”
Int. J. Space Struct.
,
16
(
4
), pp.
211
229
.10.1260/026635101760832172
68.
Wu
,
S.
,
Yue
,
L.
,
Jin
,
Y.
,
Sun
,
X.
,
Zemelka
,
C.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2021
, “
Ring Origami: Snap‐Folding of Rings With Different Geometries
,”
Adv. Intell. Syst.
,
3
(
9
), p.
2100107
.10.1002/aisy.202100107
69.
Wu
,
S.
,
Dai
,
J.
,
Leanza
,
S.
, and
Zhao
,
R. R.
,
2022
, “
Hexagonal Ring Origami—Snap-Folding With Large Packing Ratio
,”
Extreme Mech. Lett.
,
53
, p.
101713
.10.1016/j.eml.2022.101713
70.
Yoshiaki
,
G.
,
Yasuhito
,
W.
,
Toshihiro
,
K.
, and
Makoto
,
O.
,
1992
, “
Elastic Buckling Phenomenon Applicable to Deployable Rings
,”
Int. J. Solids Struct.
,
29
(
7
), pp.
893
909
.10.1016/0020-7683(92)90024-N
71.
Yoshimura
,
Y.
,
1955
, “
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression
,” No.
NACA-TM-1390
.https://ntrs.nasa.gov/citations/19930093840
72.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
(
3
), pp.
173
179
.https://riunet.upv.es/bitstream/handle/10251/6828/PAP_TACHI_2287.pdf?sequence=1
73.
Song
,
K.
,
Zhou
,
X.
,
Zang
,
S.
,
Wang
,
H.
, and
You
,
Z.
,
2017
, “
Design of Rigid-Foldable Doubly Curved Origami Tessellations Based on Trapezoidal Crease Patterns
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2200
), p.
20170016
.10.1098/rspa.2017.0016
74.
Resch
,
R. D.
,
1973
, “
The Topological Design of Sculptural and Architectural Systems
,”
National Computer Conference and Exposition
, New York, June 4–8, pp.
643
650
.10.1145/1499586.1499744
75.
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Lubiw
,
A.
,
1999
, “
Polyhedral Sculptures With Hyperbolic Paraboloids
,” Proceedings of the 2nd Annual Conference of BRIDGES: Mathematical Connections in Art, Music, and Science (
BRIDGES'99
), Winfield, KS, July 30–Aug. 1, pp.
91
100
.https://erikdemaine.org/papers/BRIDGES99/paper.pdf
76.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2019
, “
Equilibria and Bifurcations of a Foldable Paper-Based Spring Inspired by Kresling-Pattern Origami
,”
Phys. Rev. E
,
100
(
6
), p.
063001
.10.1103/PhysRevE.100.063001
77.
Novelino
,
L. S.
,
Ze
,
Q.
,
Wu
,
S.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2020
, “
Untethered Control of Functional Origami Microrobots With Distributed Actuation
,”
Proc. Natl. Acad. Sci.
,
117
(
39
), pp.
24096
24101
.10.1073/pnas.2013292117
78.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2206
), p.
20170348
.10.1098/rspa.2017.0348
79.
Suh
,
J.-E.
,
Miyazawa
,
Y.
,
Yang
,
J.
, and
Han
,
J.-H.
,
2022
, “
Self‐Reconfiguring and Stiffening Origami Tube
,”
Adv. Eng. Mater.
,
24
(
5
), p.
2101202
.10.1002/adem.202101202
80.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedra
,” Symmetry: Art and Science,
International Society for the Interdisciplinary Study of Symmetry
, Gmuend, Austria, pp.
204
213
.https://origami.c.utokyo.ac.jp/~tachi/cg/FoldableCylinders_miura_tachi_ISISSymmetry2010.pdf
81.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2016
, “
Motion Analysis of a Foldable Barrel Vault Based on Regular and Irregular Yoshimura Origami
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021017
.10.1115/1.4031658
82.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Gadgets and Tessellations
,”
R. Soc. Open Sci.
,
2
(
9
), p.
150067
.10.1098/rsos.150067
83.
Reid
,
A.
,
Lechenault
,
F.
,
Rica
,
S.
, and
Adda-Bedia
,
M.
,
2017
, “
Geometry and Design of Origami Bellows With Tunable Response
,”
Phys. Rev. E
,
95
(
1
), p.
013002
.10.1103/PhysRevE.95.013002
84.
Kamrava
,
S.
,
Ghosh
,
R.
,
Wang
,
Z.
, and
Vaziri
,
A.
,
2019
, “
Origami‐Inspired Cellular Metamaterial With Anisotropic Multi‐Stability
,”
Adv. Eng. Mater.
,
21
(
2
), p.
1800895
.10.1002/adem.201800895
85.
Feng
,
H.
,
Peng
,
R.
,
Zang
,
S.
,
Ma
,
J.
, and
Chen
,
Y.
,
2020
, “
Rigid Foldability and Mountain-Valley Crease Assignments of Square-Twist Origami Pattern
,”
Mech. Mach. Theory
,
152
, p.
103947
.10.1016/j.mechmachtheory.2020.103947
86.
Wang
,
L.-C.
,
Song
,
W.-L.
,
Fang
,
H.
, and
Fang
,
D.
,
2022
, “
Reconfigurable Force–Displacement Profiles of the Square-Twist Origami
,”
Int. J. Solids Struct.
,
241
, p.
111471
.10.1016/j.ijsolstr.2022.111471
87.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
.10.1115/1.4032102
88.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
Proceedings of the First International Seminar on Structural Morphology
, Montpellier, France, Sept. 7–11, pp.
203
215
.https://www.researchgate.net/publication/241730495_Inextensional_wrapping_of_flat_membranes
89.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
7003
7027
.10.1016/S0020-7683(99)00327-3
90.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), pp.
583
588
.10.1038/nmat4540
91.
Dang
,
X.
,
Lu
,
L.
,
Duan
,
H.
, and
Wang
,
J.
,
2022
, “
Deployment Kinematics of Axisymmetric Miura Origami: Unit Cells, Tessellations, and Stacked Metamaterials
,”
Int. J. Mech. Sci.
,
232
, p.
107615
.10.1016/j.ijmecsci.2022.107615
92.
Dang
,
X.
,
Feng
,
F.
,
Plucinsky
,
P.
,
James
,
R. D.
,
Duan
,
H.
, and
Wang
,
J.
,
2022
, “
Inverse Design of Deployable Origami Structures That Approximate a General Surface
,”
Int. J. Solids Struct.
,
234–235
, p.
111224
.10.1016/j.ijsolstr.2021.111224
93.
Filipov
,
E.
, and
Redoutey
,
M.
,
2018
, “
Mechanical Characteristics of the Bistable Origami Hypar
,”
Extreme Mech. Lett.
,
25
, pp.
16
26
.10.1016/j.eml.2018.10.001
94.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
.10.1016/S0020-7683(96)00125-4
95.
Roovers
,
K.
, and
De Temmerman
,
N.
,
2017
, “
Deployable Scissor Grids Consisting of Translational Units
,”
Int. J. Solids Struct.
,
121
, pp.
45
61
.10.1016/j.ijsolstr.2017.05.015
96.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.10.1088/0964-1726/23/9/094009
97.
Filipov
,
E.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.10.1016/j.ijsolstr.2017.05.028
98.
Gillman
,
A.
,
Fuchi
,
K.
, and
Buskohl
,
P.
,
2018
, “
Truss-Based Nonlinear Mechanical Analysis for Origami Structures Exhibiting Bifurcation and Limit Point Instabilities
,”
Int. J. Solids Struct.
,
147
, pp.
80
93
.10.1016/j.ijsolstr.2018.05.011
99.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami
,
5
, pp.
291
304
.http://wwwg.eng.cam.ac.uk/advancedstructures/files/pdf/schenk2010.pdf
100.
Woodruff
,
S. R.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model Formulation for Structural Analysis of Curved-Crease Origami
,”
Int. J. Solids Struct.
,
204–205
, pp.
114
127
.10.1016/j.ijsolstr.2020.08.010
101.
Zhu
,
Y.
,
Schenk
,
M.
, and
Filipov
,
E. T.
,
2022
, “
A Review on Origami Simulations: From Kinematics, to Mechanics, Toward Multiphysics
,”
ASME Appl. Mech. Rev.
,
74
(
3
), p.
030801
.10.1115/1.4055031
102.
Kresling
,
B.
,
2020
, “
The Fifth Fold: Complex Symmetries in Kresling–Origami Patterns
,”
Symmetry Culture Sci.
,
31
(
4
), pp.
403
416
.10.26830/symmetry_2020_4_403
103.
Nayakanti
,
N.
,
Tawfick
,
S. H.
, and
Hart
,
A. J.
,
2018
, “
Twist-Coupled Kirigami Cells and Mechanisms
,”
Extreme Mech. Lett.
,
21
, pp.
17
24
.10.1016/j.eml.2017.09.005
104.
Yasuda
,
H.
,
Miyazawa
,
Y.
,
Charalampidis
,
E. G.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2019
, “
Origami-Based Impact Mitigation Via Rarefaction Solitary Wave Creation
,”
Sci. Adv.
,
5
(
5
), p.
eaau2835
.10.1126/sciadv.aau2835
105.
Kaufmann
,
J.
,
Bhovad
,
P.
, and
Li
,
S.
,
2022
, “
Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms
,”
Soft Rob.
,
9
(
2
), pp.
212
223
.10.1089/soro.2020.0075
106.
Zhang
,
J.
,
Zhang
,
L.
, and
Wang
,
C.
,
2022
, “
Kresling Origami-Inspired Reconfigurable Antenna With Spherical Cap
,”
Int. J. Mech. Sci.
,
227
, p.
107470
.10.1016/j.ijmecsci.2022.107470
107.
Liu
,
X.
,
Yao
,
S.
, and
Georgakopoulos
,
S. V.
,
2017
, “
Mode Reconfigurable Bistable Spiral Antenna Based on Kresling Origami
,”
Proc. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting,
San Diego, CA, July 9–14, pp.
413
414
.10.1109/APUSNCURSINRSM.2017.8072249
108.
Yasuda
,
H.
,
Tachi
,
T.
,
Lee
,
M.
, and
Yang
,
J.
,
2017
, “
Origami-Based Tunable Truss Structures for Non-Volatile Mechanical Memory Operation
,”
Nat. Commun.
,
8
(
1
), pp.
1
7
.10.1038/s41467-017-00670-w
109.
Masana
,
R.
,
Khazaaleh
,
S.
,
Alhussein
,
H.
,
Crespo
,
R.
, and
Daqaq
,
M.
,
2020
, “
An Origami-Inspired Dynamically Actuated Binary Switch
,”
Appl. Phys. Lett.
,
117
(
8
), p.
081901
.10.1063/5.0010236
110.
Hunt
,
G. W.
, and
Ario
,
I.
,
2005
, “
Twist Buckling and the Foldable Cylinder: An Exercise in Origami
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
833
843
.10.1016/j.ijnonlinmec.2004.08.011
111.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, on-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci.
,
115
(
9
), pp.
2032
2037
.10.1073/pnas.1720171115
112.
Li
,
Z.
,
Kidambi
,
N.
,
Wang
,
L.
, and
Wang
,
K.-W.
,
2020
, “
Uncovering Rotational Multifunctionalities of Coupled Kresling Modular Structures
,”
Extreme Mech. Lett.
,
39
, p.
100795
.10.1016/j.eml.2020.100795
113.
Zhang
,
Q.
,
Wang
,
X.
,
Cai
,
J.
, and
Feng
,
J.
,
2021
, “
Motion Paths and Mechanical Behavior of Origami-Inspired Tunable Structures
,”
Mater. Today Commun.
,
26
, p.
101872
.10.1016/j.mtcomm.2020.101872
114.
Kidambi
,
N.
, and
Wang
,
K.
,
2020
, “
Dynamics of Kresling Origami Deployment
,”
Phys. Rev. E
,
101
(
6
), p.
063003
.10.1103/PhysRevE.101.063003
115.
Agarwal
,
V.
, and
Wang
,
K.
,
2022
, “
On the Nonlinear Dynamics of a Kresling-Pattern Origami Under Harmonic Force Excitation
,”
Extreme Mech. Lett.
,
52
, p.
101653
.10.1016/j.eml.2022.101653
116.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031015
.10.1115/1.4036096
117.
Yang
,
X.
, and
Keten
,
S.
,
2021
, “
Multi-Stability Property of Magneto-Kresling Truss Structures
,”
ASME J. Appl. Mech.
,
88
(
9
), p. 091009.10.1115/1.4051705
118.
Lu
,
L.
,
Dang
,
X.
,
Feng
,
F.
,
Lv
,
P.
, and
Duan
,
H.
,
2022
, “
Conical Kresling Origami and Its Applications to Curvature and Energy Programming
,”
Proc. R. Soc. A
,
478
(
2257
), p.
20210712
.10.1098/rspa.2021.0712
119.
Ishida
,
S.
,
Nojima
,
T.
, and
Hagiwara
,
I.
,
2014
, “
Mathematical Approach to Model Foldable Conical Structures Using Conformal Mapping
,”
ASME J. Mech. Design
,
136
(
9
), p.
091007
.10.1115/1.4027848
120.
Sharma
,
H.
, and
Upadhyay
,
S. H.
,
2020
, “
Geometric Design and Deployment Behavior of Origami Inspired Conical Structures
,”
Mech. Based Des. Struct. Mach.
, pp.
1
25
.10.1080/15397734.2020.1833738
121.
Ishida
,
S.
,
Nojima
,
T.
, and
Hagiwara
,
I.
,
2015
, “
Regular Folding Pattern for Deployable Nonaxisymmetric Tubes
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091402
.10.1115/1.4031070
122.
Al-Mulla
,
T.
, and
Buehler
,
M. J.
,
2015
, “
Folding Creases Through Bending
,”
Nat. Mater.
,
14
(
4
), pp.
366
368
.10.1038/nmat4258
123.
Sharma
,
H.
, and
Upadhyay
,
S.
,
2022
, “
Deployable Toroidal Structures Based on Modified Kresling Pattern
,”
Mech. Mach. Theory
,
176
, p.
104972
.10.1016/j.mechmachtheory.2022.104972
124.
Melancon
,
D.
,
Forte
,
A. E.
,
Kamp
,
L. M.
,
Gorissen
,
B.
, and
Bertoldi
,
K.
,
2022
, “
Inflatable Origami: Multimodal Deformation Via Multistability
,”
Adv. Funct. Mater.
,
32
(
35
), p.
2201891
.10.1002/adfm.202201891
125.
Suh
,
J.-E.
,
Kim
,
T.-H.
, and
Han
,
J.-H.
,
2021
, “
New Approach to Folding a Thin-Walled Yoshimura Patterned Cylinder
,”
J. Spacecr. Rockets
,
58
(
2
), pp.
516
530
.10.2514/1.A34784
126.
Zhang
,
Q.
,
Fang
,
H.
, and
Xu
,
J.
,
2021
, “
Yoshimura-Origami Based Earthworm-Like Robot With 3-Dimensional Locomotion Capability
,”
Front. Rob. AI
,
8
, p.
738214
.10.3389/frobt.2021.738214
127.
Paez
,
L.
,
Agarwal
,
G.
, and
Paik
,
J.
,
2016
, “
Design and Analysis of a Soft Pneumatic Actuator With Origami Shell Reinforcement
,”
Soft Rob.
,
3
(
3
), pp.
109
119
.10.1089/soro.2016.0023
128.
Chen
,
B.
,
Shao
,
Z.
,
Xie
,
Z.
,
Liu
,
J.
,
Pan
,
F.
,
He
,
L.
,
Zhang
,
L.
,
Zhang
,
Y.
,
Ling
,
X.
,
Peng
,
F.
,
Yun
,
W.
, and
Wen
,
L.
,
2021
, “
Soft Origami Gripper With Variable Effective Length
,”
Adv. Intell. Syst.
,
3
(
10
), p.
2000251
.10.1002/aisy.202000251
129.
Micheletti
,
A.
,
Giannetti
,
I.
,
Mattei
,
G.
, and
Tiero
,
A.
,
2022
, “
Kinematic and Static Design of Rigid Origami Structures: Application to Modular Yoshimura Patterns
,”
J. Archit. Eng.
,
28
(
2
), p.
04022009
.10.1061/(ASCE)AE.1943-5568.0000531
130.
De Temmerman
,
I. A. N.
,
Mollaert
,
M.
,
Van Mele
,
I. A. T.
, and
De Laet
,
I. A. L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
,
22
(
3
), pp.
161
168
.10.1260/026635107782218868
131.
Foster
,
C.
, and
Krishnakumar
,
S.
,
1987
, “
A Class of Transportable Demountable Structures
,”
Int. J. Space Struct.
,
2
(
3
), pp.
129
137
.10.1177/026635118700200301
132.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Inst. Space Astronaut. Sci. Rep.
,
618
, pp.
1
9
.http://id.nii.ac.jp/1696/00031376/
133.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.10.1073/pnas.1217998110
134.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), p.
1700360
.10.1002/adma.201700360
135.
Li
,
S.
,
Vogt
,
D. M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2017
, “
Fluid-Driven Origami-Inspired Artificial Muscles
,”
Proc. Natl. Acad. Sci.
,
114
(
50
), pp.
13132
13137
.10.1073/pnas.1713450114
136.
Song
,
Z.
,
Ma
,
T.
,
Tang
,
R.
,
Cheng
,
Q.
,
Wang
,
X.
,
Krishnaraju
,
D.
,
Panat
,
R.
,
Chan
,
C. K.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Lithium-Ion Batteries
,”
Nat. Commun.
,
5
(
1
), pp.
1
6
.10.1038/ncomms4140
137.
Tang
,
R.
,
Huang
,
H.
,
Tu
,
H.
,
Liang
,
H.
,
Liang
,
M.
,
Song
,
Z.
,
Xu
,
Y.
,
Jiang
,
H.
, and
Yu
,
H.
,
2014
, “
Origami-Enabled Deformable Silicon Solar Cells
,”
Appl. Phys. Lett.
,
104
(
8
), p.
083501
.10.1063/1.4866145
138.
Zhou
,
X.
,
Wang
,
H.
, and
You
,
Z.
,
2015
, “
Design of Three-Dimensional Origami Structures Based on a Vertex Approach
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
471
(
2181
), p.
20150407
.10.1098/rspa.2015.0407
139.
Schenk
,
M.
,
Kerr
,
S.
,
Smyth
,
A.
, and
Guest
,
S.
,
2013
, “
Inflatable Cylinders for Deployable Space Structures
,”
Proc. First Conference Transformables
, Seville, Spain, Sept. 18–20, pp.
1
6
.http://www.markschenk.com/research/files/schenk2013-Transformables.pdf
140.
Cai
,
J.
,
Deng
,
X.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2015
, “
Geometric Design and Mechanical Behavior of a Deployable Cylinder With Miura Origami
,”
Smart Mater. Struct.
,
24
(
12
), p.
125031
.10.1088/0964-1726/24/12/125031
141.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. J. Ser. C Mech. Syst., Mach. Elem. Manuf.
,
45
(
1
), pp.
364
370
.10.1299/jsmec.45.364
142.
Bös
,
F.
,
Wardetzky
,
M.
,
Vouga
,
E.
, and
Gottesman
,
O.
,
2017
, “
On the Incompressibility of Cylindrical Origami Patterns
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021404
.10.1115/1.4034970
143.
Wang
,
F.
,
Gong
,
H.
,
Chen
,
X.
, and
Chen
,
C.
,
2016
, “
Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-Based Cylindrical Structures
,”
Sci. Rep.
,
6
(
1
), pp.
1
10
.10.1038/srep33312
144.
Du
,
Y.
,
Keller
,
T.
,
Song
,
C.
,
Xiao
,
Z.
,
Wu
,
L.
, and
Xiong
,
J.
,
2021
, “
Design and Foldability of Miura-Based Cylindrical Origami Structures
,”
Thin-Walled Struct.
,
159
, p.
107311
.10.1016/j.tws.2020.107311
145.
Sharma
,
H.
, and
Upadhyay
,
S. H.
,
2021
, “
Folding Pattern Design and Deformation Behavior of Origami Based Conical Structures
,”
Adv. Space Res.
,
67
(
7
), pp.
2058
2076
.10.1016/j.asr.2021.01.012
146.
Lyu
,
S.
,
Qin
,
B.
,
Deng
,
H.
, and
Ding
,
X.
,
2021
, “
Origami-Based Cellular Mechanical Metamaterials With Tunable Poisson's Ratio: Construction and Analysis
,”
Int. J. Mech. Sci.
,
212
, p.
106791
.10.1016/j.ijmecsci.2021.106791
147.
Greenberg
,
H.
,
Gong
,
M.
,
Magleby
,
S.
, and
Howell
,
L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.10.5194/ms-2-217-2011
148.
Evans
,
T. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Rigidly Foldable Origami Twists
,”
Origami
,
6
(
1
), pp.
119
130
.https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2616&context=facpub
149.
Wang
,
L.-C.
,
Song
,
W.-L.
, and
Fang
,
D.
,
2019
, “
Twistable Origami and Kirigami: From Structure-Guided Smartness to Mechanical Energy Storage
,”
ACS Appl. Mater. Interfaces
,
11
(
3
), pp.
3450
3458
.10.1021/acsami.8b17776
150.
Kamrava
,
S.
,
Ghosh
,
R.
,
Xiong
,
J.
,
Felton
,
S. M.
, and
Vaziri
,
A.
,
2019
, “
Origami-Equivalent Compliant Mechanism
,”
Appl. Phys. Lett.
,
115
(
17
), p.
171904
.10.1063/1.5115790
151.
Wang
,
L. C.
,
Song
,
W. L.
,
Zhang
,
Y. J.
,
Qu
,
M. J.
,
Zhao
,
Z.
,
Chen
,
M.
,
Yang
,
Y.
,
Chen
,
H.
, and
Fang
,
D.
,
2020
, “
Active Reconfigurable Tristable Square‐Twist Origami
,”
Adv. Funct. Mater.
,
30
(
13
), p.
1909087
.10.1002/adfm.201909087
152.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.10.1126/science.aab2870
153.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.10.1115/1.4039314
154.
Wang
,
S.
,
Gao
,
Y.
,
Huang
,
H.
,
Li
,
B.
,
Guo
,
H.
, and
Liu
,
R.
,
2022
, “
Design of Deployable Curved-Surface Rigid Origami Flashers
,”
Mech. Mach. Theory
,
167
, p.
104512
.10.1016/j.mechmachtheory.2021.104512
155.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.10.1115/1.4032973
156.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
An Approach to Designing Deployable Mechanisms Based on Rigid Modified Origami Flashers
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082301
.10.1115/1.4040178
157.
Bowen
,
L.
,
Springsteen
,
K.
,
Feldstein
,
H.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
von Lockette
,
P.
,
2015
, “
Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011010
.10.1115/1.4029290
158.
Sadeghi
,
S.
, and
Li
,
S.
,
2020
, “
Dynamic Folding of Origami by Exploiting Asymmetric bi-Stability
,”
Extreme Mech. Lett.
,
40
, p.
100958
.10.1016/j.eml.2020.100958
159.
Treml
,
B.
,
Gillman
,
A.
,
Buskohl
,
P.
, and
Vaia
,
R.
,
2018
, “
Origami Mechanologic
,”
Proc. Natl. Acad. Sci.
,
115
(
27
), pp.
6916
6921
.10.1073/pnas.1805122115
160.
Meng
,
Z.
,
Chen
,
W.
,
Mei
,
T.
,
Lai
,
Y.
,
Li
,
Y.
, and
Chen
,
C.
,
2021
, “
Bistability-Based Foldable Origami Mechanical Logic Gates
,”
Extreme Mech. Lett.
,
43
, p.
101180
.10.1016/j.eml.2021.101180
161.
Li
,
S.
,
Stampfli
,
J. J.
,
Xu
,
H. J.
,
Malkin
,
E.
,
Diaz
,
E. V.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2019
, “
A Vacuum-Driven Origami “Magic-Ball” Soft Gripper
,”
Proc. 2019 International Conference on Robotics and Automation
(
ICRA
),
Montreal, QC, Canada, May 20–24, pp.
7401
7408
.10.1109/ICRA.2019.8794068
162.
Fang
,
H.
,
Zhang
,
Y.
, and
Wang
,
K.
,
2017
, “
Origami-Based Earthworm-Like Locomotion Robots
,”
Bioinspir. Biomim.
,
12
(
6
), p.
065003
.10.1088/1748-3190/aa8448
163.
Farnham
,
J.
,
Hull
,
T. C.
, and
Rumbolt
,
A.
,
2022
, “
Rigid Folding Equations of Degree-6 Origami Vertices
,”
Proc. R. Soc. A
,
478
(
2260
), p.
20220051
.10.1098/rspa.2022.0051
164.
Fonseca
,
L. M.
, and
Savi
,
M. A.
,
2021
, “
On the Symmetries of the Origami Waterbomb Pattern: Kinematics and Mechanical Investigations
,”
Meccanica
,
56
(
10
), pp.
2575
2598
.10.1007/s11012-021-01388-2
165.
Ma
,
J.
,
Feng
,
H.
,
Chen
,
Y.
,
Hou
,
D.
, and
You
,
Z.
,
2020
, “
Folding of Tubular Waterbomb
,”
Res.
,
2020
, pp.
1
8
.10.34133/2020/1735081
166.
Imada
,
R.
, and
Tachi
,
T.
,
2022
, “
Geometry and Kinematics of Cylindrical Waterbomb Tessellation
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041009
.10.1115/1.4054478
167.
Dong
,
S.
,
Zhao
,
X.
, and
Yu
,
Y.
,
2021
, “
Dynamic Unfolding Process of Origami Tessellations
,”
Int. J. Solids Struct.
,
226–227
, p.
111075
.10.1016/j.ijsolstr.2021.111075
168.
Zhao
,
Y.
,
Endo
,
Y.
,
Kanamori
,
Y.
, and
Mitani
,
J.
,
2018
, “
Approximating 3D Surfaces Using Generalized Waterbomb Tessellations
,”
J. Comput. Des. Eng.
,
5
(
4
), pp.
442
448
.10.1016/j.jcde.2018.01.002
169.
Zhao
,
Y.
,
Li
,
S.
,
Zhang
,
M.
,
Zeng
,
L.
,
Yang
,
Y.
,
Kanamori
,
Y.
, and
Mitani
,
J.
,
2021
, “
Computational Design Methods for Cylindrical and Axisymmetric Waterbomb Tessellations
,”
Comput. Aided Geometric Des.
,
91
, p.
102037
.10.1016/j.cagd.2021.102037
170.
Tang
,
J.
,
Tian
,
M.
,
Wang
,
C.
,
Wang
,
X.
, and
Mao
,
H.
,
2021
, “
A Novel Scheme of Folding Discretized Surfaces of Revolution Inspired by Waterbomb Origami
,”
Mech. Mach. Theory
,
165
, p.
104431
.10.1016/j.mechmachtheory.2021.104431
171.
Hu
,
Y.
,
Zhou
,
Y.
, and
Liang
,
H.
,
2021
, “
Constructing Rigid-Foldable Generalized Miura-Ori Tessellations for Curved Surfaces
,”
ASME J. Mech. Rob.
,
13
(
1
), p. 011017.10.1115/1.4048630
172.
Feng
,
F.
,
Dang
,
X.
,
James
,
R. D.
, and
Plucinsky
,
P.
,
2020
, “
The Designs and Deformations of Rigidly and Flat-Foldable Quadrilateral Mesh Origami
,”
J. Mech. Phys. Solids
,
142
, p.
104018
.10.1016/j.jmps.2020.104018
173.
Hu
,
Y.
,
Liang
,
H.
, and
Duan
,
H.
,
2019
, “
Design of Cylindrical and Axisymmetric Origami Structures Based on Generalized Miura-Ori Cell
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051004
.10.1115/1.4043800
174.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Design
,
135
(
11
), p. 111006.10.1115/1.4025389
175.
Magliozzi
,
L.
,
Micheletti
,
A.
,
Pizzigoni
,
A.
, and
Ruscica
,
G.
,
2017
, “
On the Design of Origami Structures With a Continuum of Equilibrium Shapes
,”
Compos. Part B: Eng.
,
115
, pp.
144
150
.10.1016/j.compositesb.2016.10.023
176.
Chen
,
Z.
,
Wu
,
T.
,
Nian
,
G.
,
Shan
,
Y.
,
Liang
,
X.
,
Jiang
,
H.
, and
Qu
,
S.
,
2019
, “
Ron Resch Origami Pattern Inspired Energy Absorption Structures
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011005
.10.1115/1.4041415
177.
Kshad
,
M. A. E.
,
Popinigis
,
C.
, and
Naguib
,
H. E.
,
2019
, “
3D Printing of Ron-Resch-Like Origami Cores for Compression and Impact Load Damping
,”
Smart Mater. Struct.
,
28
(
1
), p.
015027
.10.1088/1361-665X/aaec40
178.
Seffen
,
K. A.
,
2012
, “
Compliant Shell Mechanisms," Philosophical Transactions of the Royal Society A: Mathematical
,”
Phys. Eng. Sci.
,
370
(
1965
), pp.
2010
2026
.10.1098/rsta.2011.0347
179.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Hart
,
V.
,
Price
,
G. N.
, and
Tachi
,
T.
,
2011
, (“
Non) Existence of Pleated Folds: How Paper Folds Between Creases
,”
Graphs Combi.
,
27
(
3
), pp.
377
397
.10.1007/s00373-011-1025-2
180.
Yao
,
S.
, and
Georgakopoulos
,
S. V.
,
2018
, “
Origami Segmented Helical Antenna With Switchable Sense of Polarization
,”
IEEE Access
,
6
, pp.
4528
4536
.10.1109/ACCESS.2017.2787724
181.
Liu
,
A.
,
Johnson
,
M.
, and
Sung
,
C.
,
2022
, “
Increasing Reliability of Self-Folding of the Origami Hypar
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061003
.10.1115/1.4054310
182.
Buhl
,
T.
,
Jensen
,
F. V.
, and
Pellegrino
,
S.
,
2004
, “
Shape Optimization of Cover Plates for Retractable Roof Structures
,”
Comput. Struct.
,
82
(
15–16
), pp.
1227
1236
.10.1016/j.compstruc.2004.02.021
183.
Mira
,
L. A.
,
Thrall
,
A. P.
, and
De Temmerman
,
N.
,
2014
, “
Deployable Scissor Arch for Transitional Shelters
,”
Autom. Constr.
,
43
, pp.
123
131
.10.1016/j.autcon.2014.03.014
184.
Escrig
,
F.
, and
Valcarcel
,
J. P.
,
1993
, “
Geometry of Expandable Space Structures
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
71
84
.10.1177/0266351193008001-208
185.
Piñero
,
E. P.
,
1961
, “
Project for a Mobile Theatre
,”
Archit. Des.
,
12
(
1
), pp.
154
155
.
186.
Roovers
,
K.
, and
Temmerman
,
N. D.
,
2015
, “
Digital Design of Deployable Scissor Grids Based on Circle Packing
,” Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (
IASS
), Amsterdam, The Netherlands, Aug. 17–20, pp.
1
12
.https://cris.vub.be/ws/portalfiles/portal/9003881/Roovers_De_Temmerman_2015_IASS15_Digital_design_of_deployable_scissor_grids_based_on_circle_packing_e_version.pdf
187.
Tsuda
,
S.
,
Kohno
,
J.
,
Nakahara
,
Y.
, and
Ohsaki
,
M.
,
2022
, “
Composition of Curvilinearly Extendable Tubular Scissor Mechanisms
,”
Int. J. Solids Struct.
,
250
, p.
111673
.10.1016/j.ijsolstr.2022.111673
188.
Roovers
,
K.
, and
De Temmerman
,
N.
,
2017
, “
Geometric Design of Deployable Scissor Grids Consisting of Generalized Polar Units
,”
J. Int. Assoc. Shell Spat. Struct.
,
58
(
3
), pp.
227
238
.10.20898/j.iass.2017.193.865
189.
Han
,
B.
,
Xu
,
Y.
,
Yao
,
J.
,
Zheng
,
D.
,
Li
,
Y.
, and
Zhao
,
Y.
,
2019
, “
Design and Analysis of a Scissors Double-Ring Truss Deployable Mechanism for Space Antennas
,”
Aerosp. Sci. Technol.
,
93
, p.
105357
.10.1016/j.ast.2019.105357
190.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Cable-Stiffened Pantographic Deployable Structures Part 2: Mesh Reflector
,”
AIAA J.
,
35
(
8
), pp.
1348
1355
.10.2514/2.243
191.
Garcia-Mora
,
C. J.
, and
Sanchez-Sanchez
,
J.
,
2021
, “
Limitations in the Design of Deployable Structures With Straight Scissors Using Identical Elements
,”
Int. J. Solids Struct.
,
230
, p.
111171
.10.1016/j.ijsolstr.2021.111171
192.
Escrig
,
F.
,
Sanchez
,
J.
, and
Valcarcel
,
J. P.
,
1996
, “
Two Way Deployable Spherical Grids
,”
Int. J. Space Struct.
,
11
(
1–2
), pp.
257
274
.10.1177/026635119601-231
193.
Zhao
,
P.
,
Liu
,
J.
,
Wu
,
C.
,
Li
,
Y.
, and
Chen
,
K.
,
2020
, “
Novel Surface Design of Deployable Reflector Antenna Based on Polar Scissor Structures
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
15
.10.1186/s10033-020-00488-6
194.
Hoberman
,
C.
,
1990
, “
Reversibly Expandable Doubly-Curved Truss Structure
,” U.S. Patent No. 4,942,700.
195.
Hoberman
,
C.
,
1991
, “
Radial Expansion/Retraction Truss Structures
,” U.S. Patent No. 5,024,031.
196.
Dinevari
,
N. F.
,
Shahbazi
,
Y.
, and
Maden
,
F.
,
2021
, “
Geometric and Analytical Design of Angulated Scissor Structures
,”
Mech. Mach. Theory
,
164
, p.
104402
.10.1016/j.mechmachtheory.2021.104402
197.
Patel
,
J.
, and
Ananthasuresh
,
G.
,
2007
, “
A Kinematic Theory for Radially Foldable Planar Linkages
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
6279
6298
.10.1016/j.ijsolstr.2007.02.023
198.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kişisel
,
A. Ö.
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mechanism Mach. Theory
,
43
(
5
), pp.
627
640
.10.1016/j.mechmachtheory.2007.04.011
199.
Hoberman
,
C.
,
2013
, “
Mechanical Invention Through Computation-Mechanism Basics
,”
MIT Class
,
6
, p.
S080
.http://courses.csail.mit.edu/6.S080/lectures/02_all.pdf
200.
Krishnan
,
S.
, and
Liao
,
Y.
,
2020
, “
Geometric Design of Deployable Spatial Structures Made of Three-Dimensional Angulated Members
,”
J. Archit. Eng.
,
26
(
3
), p.
04020029
.10.1061/(ASCE)AE.1943-5568.0000416
201.
Pai
,
P
and., and
Palazotto
,
A.
,
1996
, “
Large-Deformation Analysis of Flexible Beams
,”
Int. J. Solids Struct.
,
33
(
9
), pp.
1335
1353
.10.1016/0020-7683(95)00090-9
202.
Audoly
,
B.
, and
Seffen
,
K. A.
,
2016
, “
Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference
,”
The Mechanics of Ribbons and Möbius Bands
,
Springer
, Dordrecht, The Netherlands, pp.
293
320
.10.1007/s10659-015-9520-y
203.
Pellegrino
,
S.
,
2001
, “
Deployable Structures in Engineering
,”
Deployable Structures
,
Springer
, Vienna, Austria, pp.
1
35
.
204.
Mouthuy
,
P.-O.
,
Coulombier
,
M.
,
Pardoen
,
T.
,
Raskin
,
J.-P.
,
Jonas
,., and
A.
, and
M.
,
2012
, “
Overcurvature Describes the Buckling and Folding of Rings From Curved Origami to Foldable Tents
,”
Nat. Commun.
,
3
(
1
), pp.
1
8
.10.1038/ncomms2311
205.
Yan
,
Z.
,
Wang
,
K.
, and
Wang
,
B.
,
2022
, “
Buckling of Circular Rings and Its Applications in Thin-Film Electronics
,”
Int. J. Mech. Sci.
,
228
, p.
107477
.10.1016/j.ijmecsci.2022.107477
206.
Sun
,
X.
,
Wu
,
S.
,
Dai
,
J.
,
Leanza
,
S.
,
Yue
,
L.
,
Yu
,
L.
,
Jin
,
Y.
,
Qi
,
H. J.
, and
Zhao
,
R. R.
,
2022
, “
Phase Diagram and Mechanics of Snap-Folding of Ring Origami by Twisting
,”
Int. J. Solids Struct.
,
248
, p.
111685
.10.1016/j.ijsolstr.2022.111685
207.
Lu
,
L.
,
Leanza
,
S.
,
Dai
,
J.
,
Sun
,
X.
, and
Zhao
,
R. R.
,
2023
, “
Easy Snap-Folding of Hexagonal Ring Origami by Geometric Modifications
,”
J. Mech. Phys. Solids
,
171
, p.
105142
.10.1016/j.jmps.2022.105142
208.
Leanza
,
S.
,
Wu
,
S.
,
Dai
,
J.
, and
Zhao
,
R. R.
,
2022
, “
Hexagonal Ring Origami Assemblies? Foldable Functional Structures With Extreme Packing
,”
ASME J. Appl. Mech.
,
89
(
8
), pp.
1
20
.10.1115/1.4054693
209.
Ma
,
C.
,
Chang
,
Y.
,
Wu
,
S.
, and
Zhao
,
R. R.
,
2022
, “
Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials
,”
ACS Appl. Mater. Interfaces
,
14
(
29
), pp.
33892
33902
.10.1021/acsami.2c09052
210.
Sun
,
X.
,
Yue
,
L.
,
Yu
,
L.
,
Shao
,
H.
,
Peng
,
X.
,
Zhou
,
K.
,
Demoly
,
F.
,
Zhao
,
R.
, and
Qi
,
H. J.
,
2022
, “
Machine Learning‐Evolutionary Algorithm Enabled Design for 4D‐Printed Active Composite Structures
,”
Adv. Funct. Mater.
,
32
(
10
), p.
2109805
.10.1002/adfm.202109805
211.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2022
, “
Harnessing Interpretable Machine Learning for Holistic Inverse Design of Origami
,”
Sci. Rep.
,
12
(
1
), pp.
1
12
.10.1038/s41598-022-23875-6
212.
Fuchi
,
K.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
.10.1115/1.4025384
213.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.10.1115/1.1388075
214.
Zhou
,
Y.
,
Nomura
,
T.
,
Dede
,
E. M.
, and
Saitou
,
K.
,
2022
, “
Topology Optimization With Wall Thickness and Piecewise Developability Constraints for Foldable Shape-Changing Structures
,”
Struct. Multidiscip. Optim.
,
65
(
4
), pp.
1
13
.10.1007/s00158-022-03219-8
215.
Pratapa
,
P. P.
,
Suryanarayana
,
P.
, and
Paulino
,
G. H.
,
2018
, “
Bloch Wave Framework for Structures With Nonlocal Interactions: Application to the Design of Origami Acoustic Metamaterials
,”
J. Mech. Phys. Solids
,
118
, pp.
115
132
.10.1016/j.jmps.2018.05.012
216.
Oudghiri-Idrissi
,
O.
, and
Guzina
,
B. B.
,
2022
, “
Effective Linear Wave Motion in Periodic Origami Structures
,”
Comput. Methods Appl. Mech. Eng.
,
399
, p.
115386
.10.1016/j.cma.2022.115386
217.
Xu
,
Z.-L.
,
Wang
,
Y.-Q.
,
Zhu
,
R.
, and
Chuang
,
K.-C.
,
2021
, “
Torsional Bandgap Switching in Metamaterials With Compression–Torsion Interacted Origami Resonators
,”
J. Appl. Phys.
,
130
(
4
), p.
045105
.10.1063/5.0056179
218.
Zhang
,
C.
,
Yang
,
Q.
, and
Tao
,
R.
,
2021
, “
Origami-Based Metamaterial With Switchable Abnormal Expansion Function
,”
Smart Mater. Struct.
,
30
(
7
), p.
075004
.10.1088/1361-665X/abff17
219.
Wang
,
Z.
,
Jing
,
L.
,
Yao
,
K.
,
Yang
,
Y.
,
Zheng
,
B.
,
Soukoulis
,
C. M.
,
Chen
,
H.
, and
Liu
,
Y.
,
2017
, “
Origami‐Based Reconfigurable Metamaterials for Tunable Chirality
,”
Adv. Mater.
,
29
(
27
), p.
1700412
.10.1002/adma.201700412
220.
Venkatesh
,
S.
,
Sturm
,
D.
,
Lu
,
X.
,
Lang
,
R. J.
, and
Sengupta
,
K.
,
2022
, “
Origami Microwave Imaging Array: Metasurface Tiles on a Shape‐Morphing Surface for Reconfigurable Computational Imaging
,”
Adv. Sci.
,
9
(
28
), p.
2105016
.10.1002/advs.202105016
221.
Ma
,
C.
,
Wu
,
S.
,
Ze
,
Q.
,
Kuang
,
X.
,
Zhang
,
R.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2021
, “
Magnetic Multimaterial Printing for Multimodal Shape Transformation With Tunable Properties and Shiftable Mechanical Behaviors
,”
ACS Appl. Mater. Interfaces
,
13
(
11
), pp.
12639
12648
.10.1021/acsami.0c13863
222.
Ze
,
Q.
,
Kuang
,
X.
,
Wu
,
S.
,
Wong
,
J.
,
Montgomery
,
S. M.
,
Zhang
,
R.
,
Kovitz
,
J. M.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Magnetic Shape Memory Polymers With Integrated Multifunctional Shape Manipulation
,”
Adv. Mater.
,
32
(
4
), p.
1906657
.10.1002/adma.201906657
223.
Peng
,
X.
,
Wu
,
S.
,
Sun
,
X.
,
Yue
,
L.
,
Montgomery
,
S. M.
,
Demoly
,
F.
,
Zhou
,
K.
,
Zhao
,
R. R.
, and
Qi
,
H. J.
,
2022
, “
4D Printing of Freestanding Liquid Crystal Elastomers Via Hybrid Additive Manufacturing
,”
Adv. Mater.
,
34
(
39
), p.
2204890
.10.1002/adma.202204890
224.
Roach
,
D. J.
,
Sun
,
X.
,
Peng
,
X.
,
Demoly
,
F.
,
Zhou
,
K.
, and
Qi
,
H. J.
,
2022
, “
4D Printed Multifunctional Composites With Cooling‐Rate Mediated Tunable Shape Morphing
,”
Adv. Funct. Mater.
,
32
(
36
), p.
2203236
.10.1002/adfm.202203236
225.
Kuang
,
X.
,
Wu
,
S.
,
Ze
,
Q.
,
Yue
,
L.
,
Jin
,
Y.
,
Montgomery
,
S. M.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2021
, “
Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures
,”
Adv. Mater.
,
33
(
30
), p.
2102113
.10.1002/adma.202102113
226.
Montgomery
,
S. M.
,
Wu
,
S.
,
Kuang
,
X.
,
Armstrong
,
C. D.
,
Zemelka
,
C.
,
Ze
,
Q.
,
Zhang
,
R.
,
Zhao
,
R.
, and
Qi
,
H. J.
,
2021
, “
Magneto‐Mechanical Metamaterials With Widely Tunable Mechanical Properties and Acoustic Bandgaps
,”
Adv. Funct. Mater.
,
31
(
3
), p.
2005319
.10.1002/adfm.202005319
227.
Wu
,
S.
,
Eichenberger
,
J.
,
Dai
,
J.
,
Chang
,
Y.
,
Ghalichechian
,
N.
, and
Zhao
,
R. R.
,
2022
, “
Magnetically Actuated Reconfigurable Metamaterials as Conformal Electromagnetic Filters
,”
Adv. Intell. Syst.
,
4
(
9
), p.
2200106
.10.1002/aisy.202200106
You do not currently have access to this content.