0
Research Papers

Assessment of Model Confidence of a Laser Source Model in xRAGE Using Omega Direct-Drive Implosion Experiments

[+] Author and Article Information
Brandon M. Wilson

XCP-8,
Los Alamos National Laboratory,
Los Alamos, NM 87545
e-mail: bwilson@lanl.gov

Aaron Koskelo

XCP-8,
Los Alamos National Laboratory,
Los Alamos, NM 87545

Manuscript received December 21, 2018; final manuscript received March 27, 2019; published online April 16, 2019. Assoc. Editor: Kyle Daun. The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States government purposes.

J. Verif. Valid. Uncert 3(4), 041003 (Apr 16, 2019) (12 pages) Paper No: VVUQ-18-1038; doi: 10.1115/1.4043370 History: Received December 21, 2018; Revised March 27, 2019

Los Alamos National Laboratory is interested in developing high-energy-density physics validation capabilities for its multiphysics code xRAGE. xRAGE was recently updated with the laser package Mazinisin to improve predictability. We assess the current implementation and coupling of the laser package via validation of laser-driven, direct-drive spherical capsule experiments from the Omega laser facility. The ASME V&V 20-2009 standard is used to determine the model confidence of xRAGE, and considerations for high-energy-density physics are identified. With current modeling capabilities in xRAGE, the model confidence is overwhelmed by significant systematic errors from the experiment or model. Validation evidence suggests cross-beam energy transfer as a dominant source of the systematic error.

Copyright © 2018 by ASME
Topics: Lasers , Uncertainty , Errors
Your Session has timed out. Please sign back in to continue.

References

Gittings, M. , Weaver, R. , Clover, M. , Betlach, T. , Byrne, N. , Coker, R. , Dendy, E. , Hueckstaedt, R. , New, K. , Oakes, W. R. , Ranta, D. , and Stefan, R. , 2008, “ The RAGE Radiation-Hydrodynamic Code,” Comput. Sci. Discovery, 1(1), p. 015005. [CrossRef]
Frey, L. H. , Even, W. , Whalen, D. J. , Fryer, C. L. , Hungerford, A. L. , Fontes, C. J. , and Colgan, J. , 2013, “ The Los Alamos Supernova Light-Curve Project: Computational Methods,” Astrophys. J. Suppl. Ser., 204(2), p. 16. [CrossRef]
Bradley, P. A. , Cobble, J. A. , Tregillis, I. L. , Schmitt, M. J. , Obrey, K. D. , Glebov, V. , Batha, S. H. , Magelssen, G. R. , Fincke, J. R. , Hsu, S. C. , Krasheninnikova, N. S. , Murphy, T. J. , and Wysocki, F. J. , 2012, “ Role of Shocks and Mix Caused by Capsule Defects,” Phys. Plasmas, 19(9), p. 092703. [CrossRef]
Atzeni, S. , and Meyer-Ter-Vehn, J. , 2004, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, Vol. 125, Oxford University Press, Oxford, UK.
Haines, B. M. , personal communication.
Marozas, J. A. , Hohenberger, M. , Rosenberg, M. J. , Turnbull, D. , Collins, T. J. B. , Radha, P. B. , McKenty, P. W. , Zuegel, J. D. , Marshall, F. J. , Regan, S. P. , and Sangster, T. C. , 2018, “ Wavelength Detuning Cross-Beam Energy Transfer Mitigation Scheme for Direct-Drive Modeling and Evidence Form National Ignition Facility Implosions,” Phys. Plasmas, 25(5), p. 056314.
Keller, D. , Collins, T. J. B. , Delettrez, J. A. , McKenty, P. W. , Radha, P. B. , Town, R. P. J. , Whitney, B. , and Moses, G. A. , 1999, “ Draco—A New Multidimensional Hydrocode,” APS Division of Plasma Physics, Meeting, Seattle, WA, Nov.
Goncharov, V. , McKenty, P. , Skupsky, S. , Betti, R. , McCrory, R. , and Cherfils-Clérouin, C. , 2000, “ Modeling Hydrodynamic Instabilities in Inertial Confinement Fusion Targets,” Phys. Plasmas, 7(12), pp. 5118–5139. [CrossRef]
Langer, S. H. , Karlin, I. , and Marinak, M. M. , 2014, “ Performance Characteristics of Hydra–A Multi-Physics Simulation Code From LLNL,” International Conference on High Performance Computing for Computational Science, Eugene, OR, June, pp. 173–181.
Craxton, R. S. , Anderson, K. S. , Boehly, T. R. , Goncharov, V. N. , Harding, D. R. , Knauer, J. P. , McCrory, R. L. , McKenty, P. W. , Meyerhofer, D. D. , Myatt, J. F. , Schmitt, A. J. , Sethian, J. D. , Short, R. W. , Skupsky, S. , Theobald, W. , Kruer, W. L. , Tanaka, K. , Betti, R. , Collins, T. J. B. , Delettrez, J. A. , Hu, S. X. , Marozas, J. A. , Maximov, A. V. , Michel, D. T. , Radha, P. B. , Regan, S. P. , Sangster, T. C. , Seka, W. , Solodov, A. A. , Soures, J. M. , Stoeckl, C. , and Zuegel, J. D. , 2015, “ Direct-Drive Inertial Confinement Fusion: A Review,” Phys. Plasmas, 22(11), p. 110501. [CrossRef]
Lindl, J. D. , Amendt, P. , Berger, R. L. , Glendinning, S. G. , Glenzer, S. H. , Haan, S. W. , Kauffman, R. L. , Landen, O. L. , and Suter, L. J. , 2004, “ The Physics Basis for Ignition Using Indirect-Drive Targets on the National Ignition Facility,” Phys. Plasmas, 11(2), pp. 339–491. [CrossRef]
ASME, 2009, “ Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer,” American Society of Mechanical Engineers, New York, Report No. V&V 20-2009.
Wilson, B. M. , and Koskelo, A. , 2019, “ Assessment of Model Acceptability and Validation Recommendations of a Laser Source Model in xRAGE Using Omega Direct-Drive Implosion Experiments,” J. VVUQ (in preparation).
Michel, D. T. , Craxton, R. S. , Davis, A. K. , Epstein, R. , Glebov, V. Y. , Goncharov, V. N. , Hu, S. X. , Igumenshchev, I. V. , Myerhofer, D. D. , Radha, P. B. , Sangster, T. C. , Seka, W. , Stoeckl, C. , and Froula, D. H. , 2015, “ Implosion Dynamics in Direct-Drive Experiments,” Plasma Phys. Control Fusion, 57(1), p. 014023.
Michel, D. T. , Goncharov, V. N. , Igumenshchev, I. V. , Epstein, R. , and Froula, D. H. , 2013, “ Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator Materials,” Phys. Rev. Lett., 111(24), p. 245005.
Wilson, B. M. , and Koskelo, A. , 2019, “ The Effect of Compensating Errors on Validation Assessments,” J. VVUQ (in preparation).
Eularian Applications Code Team, 2017, “ xRage User's Manual,” Code Version 1.170710, Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-CP-11-00643.
Spitzer, L. , and Härm, R. , 1953, “ Transport Phenomena in a Completely Ionized Gas,” Phys. Rev., 89(5), pp. 977–981. [CrossRef]
Malone, R. C. , McCrory, R. L. , and Morse, R. L. , 1975, “ Indications of Strongly Flux-Limited Electron Thermal Conduction in Laser-Target Experiments,” Phys. Rev. Lett., 34(12), p. 721.
Hu, S. X. , Smalyuk, V. A. , Goncharov, V. N. , Skupsky, S. , Sangster, T. C. , Myerhofer, D. D. , and Shvartz, D. , 2008, “ Validation of Thermal Transport Modeling With Direct-Drive, Planar-Foil Acceleration Experiments at OMEGA,” Phys. Rev. Lett., 101(5), p. 055002.
Schurtz, G. , Nicolai, P. D. , and Busquet, M. , 2000, “ A Nonlocal Electron Conduction Model for Multidimensional Radiation Hydrodynamics Codes,” Phys. Plasmas, 7(10), pp. 4238–4249. [CrossRef]
Lyon, S. P. , and Johnson, J. D. , 1992, “ SESAME: The Los Alamos National Laboratory Equation of State Database,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LANL, LA-UR-92-3407.
Magee, N. , Abdallah , J., Jr. , Clark, R. , Cohen, J. , Collins, L. , Csanak, G. , Fontes, C. , Gauger, A. , Keady, J. , and Kilcrease, D. , 1995, “ Atomic Structure Calculations and New Los Alamos Astrophysical Opacities,” Astrophys. Appl. Powerful New Databases, 78, p. 51.
Igumneshchev, I. V. , Seka, W. , Edgell, D. H. , Michel, D. T. , Froula, D. H. , Goncharov, V. N. , Craxton, R. S. , Divol, L. , Epstein, R. , Follett, R. , and Kelly, J. H. , 2012, “ Crossed-Beam Energy Transfer in Direct-Drive Implosions,” Phys. Plasmas, 19(5), p. 056314.
Roache, P. J. , 1997, “ Quantification of Uncertainty in Computational Fluid Dynamics,” Annu. Rev. Fluid Mech., 29(1), pp. 123–160. [CrossRef]
Phillips, T. S. , and Roy, C. J. , 2017, “ A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics,” ASME J. Verif. Valid. Uncertainty Quantif., 1(4), p. 041006. [CrossRef]
Cao, D. , Moses, G. , and Delettrez, J. , 2015, “ Improved Non-Local Electron Thermal Transport Model for Two-Dimensional Radiation Hydrodynamics Simulations,” Phys. Plasmas, 22(8), p. 082308. [CrossRef]
Igumenshchev, I. , Edgell, D. , Goncharov, V. , Delettrez, J. , Maximov, A. , Myatt, J. , Seka, W. , Shvydky, A. , Skupsky, S. , and Stoeckl, C. , 2010, “ Crossed-Beam Energy Transfer in Implosion Experiments on Omega,” Phys. Plasmas, 17(12), p. 122708. [CrossRef]
Randall, C. , Albritton, J. R. , and Thomson, J. , 1981, “ Theory and Simulation of Stimulated Brillouin Scatter Excited by Nonabsorbed Light in Laser Fusion Systems,” Phys. Fluids, 24(8), pp. 1474–1484. [CrossRef]
Dodd, E. S. , Benage, J. F. , Kyrala, G. A. , Wilson, D. C. , Wysocki, F. J. , Seka, W. , Glebov, V. Y. , Stoeckl, C. , and Frenje, J. A. , 2012, “ The Effects of Laser Absorption on Direct-Drive Capsule Experiments at Omega,” Phys. Plasmas, 19(4), p. 042703.
Froula, D. H. , Igumenshchev, I. V. , Michel, D. T. , Edgell, D. H. , Follett, R. , Glebov, V. Y. , Goncharov, V. N. , Kwiatkowski, J. , Marshall, F. J. , Radha, P. B. , and Seka, W. , 2012, “ Increased Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive Implosion-Experiments,” Phys. Rev. Lett., 108(12), p. 125003.
Molvig, K. , Schmitt, M. J. , Albright, B. , Dodd, E. , Hoffman, N. , McCall, G. , and Ramsey, S. , 2016, “ Low Fuel Convergence Path to Direct-Drive Fusion Ignition,” Phys. Rev. Lett., 116(25), p. 255003. [CrossRef] [PubMed]
Glenzer, S. H. , Rozmus, W. , MacGowan, B. J. , Estabrook, K. G. , De Groot, J. D. , Zimmerman, G. B. , Baldis, H. A. , Harte, J. A. , Lee, R. W. , Williams, E. A. , and Wilson, B. G. ,. 1999, “ Thomson Scattering From High-z Laser-Produced Plasmas,” Phys. Rev. Lett., 82(1), p. 97. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Early implosion dynamics of a typical ICF validation experiment. First, significant energy from high energy lasers is absorbed into the capsule ablator shell via inverse bremsstrahlung. Next, the outer shell ablation accelerates the shell inward and compresses the fuel and inner layers to very high temperatures and pressures: 1–plasma formation and 2–ablative compression.

Grahic Jump Location
Fig. 2

Electron temperature and density profiles at 1800 ps (top), 2200 ps (middle), and 2600 ps (bottom) during the drive for the high energy Be ablator shells. Ablation front is indicated by vertical dashed line. As time progresses, a dense plasma separates the ablation front from the bulk mass.

Grahic Jump Location
Fig. 3

Example of the experimental data for the Be (high) case. QoI shown are the laser energy (), scattered energy (), absorbed energy (), ablation front position (), and ablation front velocity (). Uncertainties are on the order of symbol size.

Grahic Jump Location
Fig. 4

The initial mesh (top) and geometry (bottom) given to xRAGE. To better show the capsule geometry, the geometry scale is exaggerated. Mesh spacing is realistic.

Grahic Jump Location
Fig. 5

Numerical uncertainty assessment of the (a) scattered laser energy and (b) ablation front position. Estimated numerical error ẽN,ϕ of the nominal grid size (blue) is contained within the GCI-estimated standard numerical uncertainty (shaded gray region). The scattered energy and ablation front QoI with numerical uncertainty (green shaded regions) are shown as a reference. The numerical error L1 norm shown on the right with reference convergence rates of one-half, one, and two: (a) ϕps(TW) and (b) ϕr (μm).

Grahic Jump Location
Fig. 6

Contributions of input parameters (i.e., mass ma, incident laser power Pi, density ρa, beam radius rbeam, and capsule radius ro) to the total validation uncertainty uV,ϕ for the C high case. Input parameters with negligible influence (e.g., inner and outer gas pressures and densities) are not shown: (a) ϕps(TW) and (b) ϕr (μm), and (c) ϕυ (km/s).

Grahic Jump Location
Fig. 7

Normalized contributions of uncertainty components to the total validation uncertainty uV,ϕ for the C high case: (a) ϕps(TW) and (b) ϕr (μm), and (c) ϕυ (km/s)

Grahic Jump Location
Fig. 8

Validation assessment of QoI (top) and model error normalized by model requirements (bottom) for the nominal case. Comparison of scattered laser light (green), shell trajectories (red), and shell velocities (cyan) for experimental data (symbols) [14] and xRAGE (lines). Validation uncertainty (i.e., 1σ, 2σ, and 3σ confidence) given as shaded regions. Incident laser power (black) is shown as a reference: (a) C (l), (b) C (h), (c) Be (l), and (d) Be (h).

Grahic Jump Location
Fig. 9

Sensitivity to the laser energy deposited during the first laser picket (i.e., 1.5 Pi,t≤0.3 (—), Pi (— —), and 0.5Pi,t≤0.3 (— –), respectively. Comparison of laser power (black), scattered laser energy (green), and shell trajectory (red). The results are presented for the C ablator shell at high laser power. Incident laser power (black) is shown as a reference.

Grahic Jump Location
Fig. 10

Sensitivity to the flux limiter and identification of the flux limiter-independent value (i.e., nonlocal Schurtz model (—) and local Spitzer models with f =0.03 (— —), f =0.05 (— — –), and f =0.15 (— –), respectively. Comparison of scattered laser energy (green) and shell trajectory (red). The results are presented for the C ablator shell at high laser power. Incident laser power (black) is shown as a reference. For plot clarity, f =0.04, 0.07, and 0.10 are not shown.

Grahic Jump Location
Fig. 11

Validation assessment of QoI (top) and model error normalized by model requirements (bottom) for the flux limiting case. Comparison of scattered laser energy (green), shell trajectories (red), and shell velocities (cyan) for experimental data (symbols) [14] and xRAGE (lines). Validation uncertainty (i.e., 1σ, 2σ, and 3σ confidence) given as shaded regions. Incident laser power (black) is shown as a reference: (a) C (h)—flux limiting, (b) Be (h)—flux limiting.

Grahic Jump Location
Fig. 12

Validation assessment of QoI (top) and model error normalized by model requirements (bottom) for the laser scaling case. Comparison of scattered laser energy (green), shell trajectories (red), and shell velocities (cyan) for experimental data (symbols) [14] and xRAGE (lines). Validation uncertainty (i.e., 1σ, 2σ, and 3σ confidence) given as shaded regions. Incident laser power (black) is shown as a reference: (a) C (h)—laser scaling and (b) Be (h)—laser scaling.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In