Eiseman,
P. R.
, 1987, “
Adaptive Grid Generation,” Comput. Methods Appl. Mech. Eng.,
64(1–3), pp. 321–376.

Anderson,
D. A.
, 1987, “
Equidistribution Schemes, Poisson Generators, and Adaptive Grids,” Appl. Math. Comput.,
24(3), pp. 211–227.

Hawken,
D.
,
Gottlieb,
J.
, and
Hansen,
J.
, 1991, “
Review of Some Adaptive Node-Movement Techniques in Finite-Element and Finite-Difference Solutions of Partial Differential Equations,” J. Comput. Phys.,
95(2), pp. 254–302.

Baker,
T. J.
, 1997, “
Mesh Adaptation Strategies for Problems in Fluid Dynamics,” Finite Elem. Anal. Des.,
25(3–4), pp. 243–273.

Dwight,
R. P.
, 2008, “
Heuristic a Posteriori Estimation of Error Due to Dissipation in Finite Volume Schemes and Application to Mesh Adaptation,” J. Comput. Phys.,
227(5), pp. 2845–2863.

Ainsworth,
M.
, and
Oden,
J.
, 2000, A Posteriori Error Estimation in Finite Element Analysis,
Wiley Interscience,
New York.

Roy,
C. J.
, 2009, “
Strategies for Driving Mesh Adaptation in CFD,” AIAA Paper No. 2009-1302.

Zhang,
X.
,
Trepanier,
J.-Y.
, and
Camarero,
R.
, 2000, “
A Posteriori Error Estimation for Finite-Volume Solutions of Hyperbolic Conservation Laws,” Comput. Methods Appl. Mech. Eng.,
185(1), pp. 1–19.

Gu,
X.
, and
Shih,
T.
, 2001, “
Differentiating Between Source and Location of Error for Solution-Adaptive Mesh Refinement,” AIAA Paper No. 2001–2660.

Zienkiewicz,
O. C.
, and
Zhu,
J. Z.
, 1992, “
The Superconvergent Patch Recovery and a Posteriori Error Estimates—Part 2: Error Estimates and Adaptivity,” Int. J. Numer. Methods Eng.,
33(7), pp. 1365–1382.

Laflin,
K. R.
, 1997, “
Solver-Independent r-Refinement Adaptation for Dynamic Numerical Simulations,” Ph.D. thesis, North Carolina State University, Raleigh, NC.

McRae,
D. S.
, 2000, “
r-Refinement Grid Adaptation Algorithms and Issues,” Comput. Methods Appl. Mech. Eng.,
189(4), pp. 1161–1182.

Venditti,
D. A.
, and
Darmofal,
D. L.
, 2000, “
Adjoint Error Estimation and Grid Adaptation for Functional Outputs: Application to Quasi-One-Dimensional Flow,” J. Comput. Phys.,
164(1), pp. 204–227.

Venditti,
D. A.
, and
Darmofal,
D. L.
, 2002, “
Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows,” J. Comput. Phys.,
176(1), pp. 40–69.

Fidkowski,
K. J.
, and
Darmofal,
D. L.
, 2011, “
Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics,” AIAA J.,
49(4), pp. 673–694.

Oberkampf,
W. L.
, and
Roy,
C. J.
, 2010, Verification and Validation in Scientific Computing,
Cambridge University Press,
Cambridge, UK.

Borsboom,
M.
, 1998, “
Development of an Error-Minimizing Adaptive Grid Method,” Appl. Numer. Math.,
26(1–2), pp. 13–21.

Sod,
G. A.
, 1978, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. Comput. Phys.,
27(1), pp. 1–31.

Klopfer,
G. H.
, and
McRae,
D. S.
, 1983, “
Nonlinear Truncation Error Analysis of Finite Difference Schemes for the Euler Equations,” AIAA J.,
21(4), pp. 487–494.

Fraysse,
F.
,
Rubio,
G.
,
de Vicente,
J.
, and
Valero,
E.
, 2014, “
Quasi-a Priori Mesh Adaptation and Extrapolation to Higher Order Using τ-Estimation,” Aerosp. Sci. Technol.,
38, pp. 76–87.

Tyson,
W. C.
, 2015, “
Application of r-Adaptation Techniques for Discretization Error Improvement in CFD,” Master's thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

https://vtechworks.lib.vt.edu/handle/10919/78061
Phillips,
T. S.
,
Derlaga,
J. M.
,
Roy,
C. J.
, and
Borggaard,
J.
, 2017, “
Error Transport Equation Boundary Conditions for the Euler and Navier–Stokes Equations,” J. Comput. Phys.,
330, pp. 46–64.

Russell,
R. D.
, and
Christiansen,
J.
, 1978, “
Adaptive Mesh Selection Strategies for Solving Boundary Value Problems,” SIAM J. Numer. Anal.,
15(1), pp. 59–80.

Kautsky,
J.
, and
Nichols,
N.
, 1980, “
Equidistributing Meshes With Constraints,” SIAM J. Sci. Stat. Comput.,
1(4), pp. 499–511.

Anderson,
D. A.
, 1990, “
Grid Cell Volume Control With an Adaptive Grid Generator,” Appl. Math. Comput.,
35(3), pp. 209–217.

Winslow,
A.
, 1966, “
Numerical Solution of the Quasi-Linear Poisson Equation,” J. Comput. Phys.,
1(2), pp. 149–172.

Brackbill,
J.
, and
Saltzman,
J.
, 1982, “
Adaptive Zoning for Singular Problems in Two Dimensions,” J. Comput. Phys.,
46(3), pp. 342–368.

Brackbill,
J.
, 1993, “
An Adaptive Grid With Directional Control,” J. Comput. Phys.,
108(1), pp. 38–50.

Huang,
W.
, and
Russell,
R.
, 2011, Adaptive Moving Mesh Methods,
Springer,
New York.

Benson,
R.
, and
McRae,
D.
, 1991, “
A Solution-Adaptive Mesh Algorithm for Dynamic/Static Refinement of Two and Three Dimensional Grids,” Third International Conference on Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, Barcelona, Spain, June 3--7, pp. 185–199.

Liao,
G.
, and
Anderson,
D.
, 1992, “
A New Approach to Grid Generation,” Appl. Anal.,
44(3–4), pp. 285–298.

Moser,
J.
, 1965, “
On the Volume Elements on a Manifold,” Trans. Am. Math. Soc.,
120(2), pp. 286–294.

Grisham,
J. R.
,
Vijayakumar,
N.
,
Liao,
G.
,
Dennis,
B. H.
, and
Lu,
F. K.
, 2015, “
A Comparison Between Local h-Refinement and a Novel r-Refinement Method,” AIAA Paper No. 2015-2040.

Choudhary,
A.
, 2014, “
Verification of Compressible and Incompressible Computational Fluid Dynamics Codes and Residual-Based Mesh Adaptation,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

https://vtechworks.lib.vt.edu/handle/10919/51169
Roe,
P.
, 1997, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys.,
135(2), pp. 250–258.

van Leer,
B.
, 1979, “
Towards the Ultimate Conservative Difference Scheme—V: A Second-Order Sequel to Godunov's Method,” J. Comput. Phys.,
32(1), pp. 101–136.

Derlaga,
J. M.
,
Phillips,
T.
, and
Roy,
C. J.
, 2013, “
SENSEI Computational Fluid Dynamics Code: A Case Study in Modern Fortran Software Development,” AIAA Paper No. 2013-2450.

van Leer,
B.
, 1982, “
Flux-Vector Splitting for the Euler Equations,” Eighth International Conference on Numerical Methods in Fluid Dynamics, Aachen, Germany, June 28–July 2, pp. 507–512.

Beam,
R. M.
, and
Warming,
R.
, 1976, “
An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form,” J. Comput. Phys.,
22(1), pp. 87–110.

Banks,
J.
,
Aslam,
T.
, and
Rider,
W.
, 2008, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes,” J. Comput. Phys.,
227(14), pp. 6985–7002.

Karamcheti,
K.
, 1966, Principles of Ideal-Fluid Aerodynamics,
Krieger Publishing Company,
Malabar, FL.

Vassberg,
J. C.
, and
Jameson,
A.
, 2010, “
In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions,” J. Aircr.,
47(4), pp. 1152–1166.

Barth,
T.
, 1993, “
Recent Developments in High Order k-Exact Reconstruction on Unstructured Meshes,” AIAA Paper No. 93-0668.

Sharbatdar,
M.
, and
Ollivier-Gooch,
C.
, 2018, “
Mesh Adaptation Using C1 Interpolation of the Solution in an Unstructured Finite Volume Solver,” Int. J. Numer. Methods Fluids,
86(10), pp. 637–654.

Jackson,
C. W.
, and
Roy,
C. J.
, 2015, “
A Multi-Mesh CFD Technique for Adaptive Mesh Solutions,” AIAA Paper No. 2015-1958.