Abstract

Autonomous ground vehicles (AGVs) operating collaboratively have several advantages over vehicles operating alone. An AGV team may be more resilient and efficient than a single AGV. Other advantages of AGV teams include increased coverage and multiple viewing angles of terrain features as well as resistance to failure from any single AGV. Additionally, AGV teams can explore large terrains more quickly and thoroughly than a single system. In this work, the feasibility of using a team of high-mobility AGV to explore a navigation corridor, map the terrain, and autonomously flag obstacles for future navigation is evaluated. Focusing on negative obstacles, the value of using multiple vehicles to map a navigation corridor is quantified. This study is the first to evaluate large teams of AGV collaborating in realistic off-road, 3D environments. The feasibility of the large-scale AGV team is demonstrated while avoiding the high cost of purchasing and testing large numbers of vehicles using the Mississippi State University autonomous vehicle simulator (MAVS), a high-fidelity, physics-based simulation tool. The cost and benefits of increasing the AGV team size are evaluated. The simulation results show how factors like fuel use, map coverage, and obstacle detection are influenced by increasing numbers of AGV in the team. The simulation architecture is presented and experiments quantifying the performance of the simulator are shown. Finally, a model for evaluating the tradeoff between mission effectiveness and fuel use is developed and presented to demonstrate the utility of this approach.

References

1.
Daily
,
M.
,
Medasani
,
S.
,
Behringer
,
R.
, and
Trivedi
,
M.
,
2017
, “
Self-Driving Cars
,”
Computer
,
50
(
12
), pp.
18
23
.
2.
Badue
,
C.
,
Guidolini
,
R.
,
Carneiro
,
R. V.
,
Azevedo
,
P.
,
Cardoso
,
V. B.
,
Forechi
,
A.
,
Jesus
,
L.
,
Berriel
,
R.
,
Paixão
,
T. M.
, and
Mutz
,
F.
,
2020
, “
Self-Driving Cars: A Survey
,”
Exp. Syst. Appl.
,
165
, p.
113816
.
3.
Rao
,
Q.
, and
Frtunikj
,
J.
,
2018
, “
Deep Learning for Self-Driving Cars: Chances and Challenges
,”
Proceedings of the 1st International Workshop on Software Engineering for AI in Autonomous Systems
,
Gotenburg, Sweden
,
May 28
, pp.
35
38
.
4.
Kelly
,
A.
,
Stentz
,
A.
,
Amidi
,
O.
,
Bode
,
M.
,
Bradley
,
D.
,
Diaz-Calderon
,
A.
,
Happold
,
M.
,
Herman
,
H.
,
Mandelbaum
,
R.
, and
Pilarski
,
T.
,
2006
, “
Toward Reliable Off Road Autonomous Vehicles Operating in Challenging Environments
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
449
483
.
5.
Goodin
,
C.
,
Dabbiru
,
L.
,
Hudson
,
C.
,
Mason
,
G.
,
Carruth
,
D.
, and
Doude
,
M.
,
2021
, “
Fast Terrain Traversability Estimation With Terrestrial Lidar in Off-Road Autonomous Navigation
,”
Unmanned Systems Technology XXIII
,
Orlando, FL
,
Apr. 12
, Vol.
11758
,
International Society for Optics and Photonics
, p.
117580O
.
6.
Matthies
,
L.
, and
Rankin
,
A.
,
2003
, “
Negative Obstacle Detection by Thermal Signature
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453)
,
Las Vegas, NV
,
Oct. 27
, Vol.
1
,
IEEE
, pp.
906
913
.
7.
Goodin
,
C.
,
Carrillo
,
J.
,
Monroe
,
J. G.
,
Carruth
,
D. W.
, and
Hudson
,
C. R.
,
2021
, “
An Analytic Model for Negative Obstacle Detection With Lidar and Numerical Validation Using Physics-Based Simulation
,”
Sensors
,
21
(
9
), p.
3211
.
8.
Arnold
,
R.
,
Carey
,
K.
,
Abruzzo
,
B.
, and
Korpela
,
C.
,
2019
, “
What Is a Robot Swarm: A Definition for Swarming Robotics
,”
2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)
,
New York, NY
,
Oct. 10
,
IEEE
, pp.
0074
0081
.
9.
Goodin
,
C.
,
Doude
,
M.
,
Hudson
,
C.
, and
Carruth
,
D.
,
2018
, “
Enabling Off-Road Autonomous Navigation-Simulation of Lidar in Dense Vegetation
,”
Electronics
,
7
(
9
), p.
154
.
10.
Huang
,
W.
,
Wang
,
K.
,
Lv
,
Y.
, and
Zhu
,
F.
,
2016
, “
Autonomous Vehicles Testing Methods Review
,”
2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)
,
Rio de Janeiro, Brazil
,
Nov. 1
,
IEEE
, pp.
163
168
.
11.
Meadows
,
W.
,
Hudson
,
C.
,
Goodin
,
C.
,
Dabbiru
,
L.
,
Powell
,
B.
,
Doude
,
M.
,
Carruth
,
D.
,
Islam
,
M.
,
Ball
,
J. E.
, and
Tang
,
B.
,
2019
, “
Multi-Lidar Placement, Calibration, Co-registration, and Processing on a Subaru Forester for Off-Road Autonomous Vehicles Operations
,”
Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2019
,
Baltimore, MD
,
May 2
, Vol.
11009
,
International Society for Optics and Photonics
, p.
110090J
.
12.
Schöner
,
H.-P.
,
2018
, “
Simulation in Development and Testing of Autonomous Vehicles
,”
18th Stuttgart International Symposium
,
Stuttgart, Germany Mar. 15
, pp.
3
14
.
13.
Burgard
,
W.
,
Moors
,
M.
,
Fox
,
D.
,
Simmons
,
R.
, and
Thrun
,
S.
,
2000
, “
Collaborative Multi-Robot Exploration
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24
, Vol.
1
,
IEEE
, pp.
476
481
.
14.
Burgard
,
W.
,
Moors
,
M.
,
Stachniss
,
C.
, and
Schneider
,
F. E.
,
2005
, “
Coordinated Multi-Robot Exploration
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
376
386
.
15.
Rekleitis
,
I.
,
Dudek
,
G.
, and
Milios
,
E.
,
2001
, “
Multi-Robot Collaboration for Robust Exploration
,”
Ann. Math. Artif. Intell.
,
31
(
1
), pp.
7
40
.
16.
Dudek
,
G.
, and
Sim
,
R.
,
2003
, “
Robodaemon—A Device Independent, Network-Oriented, Modular Mobile Robot Controller
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)
,
Taipei, Taiwan
,
Sept. 14
, Vol.
3
,
IEEE
, pp.
3434
3440
.
17.
Simmons
,
R.
,
Apfelbaum
,
D.
,
Burgard
,
W.
,
Fox
,
D.
,
Moors
,
M.
,
Thrun
,
S.
, and
Younes
,
H.
,
2000
, “
Coordination for Multi-Robot Exploration and Mapping
,”
AAAI/IAAI
,
Austin, TX
,
Aug. 1
, pp.
852
858
18.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
,
2000
, “
A Real-Time Algorithm for Mobile Robot Mapping With Applications to Multi-Robot and 3d Mapping
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24
, Vol.
1
,
IEEE
, pp.
321
328
.
19.
Ko
,
J.
,
Stewart
,
B.
,
Fox
,
D.
,
Konolige
,
K.
, and
Limketkai
,
B.
,
2003
, “
A Practical, Decision-Theoretic Approach to Multi-Robot Mapping and Exploration
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453)
,
Las Vegas, NV
,
Oct. 27
, Vol.
4
,
IEEE
, pp.
3232
3238
.
20.
Howard
,
A.
,
2004
, “
Multi-Robot Mapping Using Manifold Representations
,”
IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
,
New Orleans, LA
,
Apr. 26
, Vol.
4
,
IEEE
, pp.
4198
4203
.
21.
Vazquez
,
J.
, and
Malcolm
,
C.
,
2004
, “
Distributed Multirobot Exploration Maintaining a Mobile Network
,”
2004 2nd International IEEE Conference on ‘Intelligent Systems’. Proceedings (IEEE Cat. No. 04EX791)
,
Varna, Bulgaria
,
June 22
, Vol.
3
,
IEEE
, pp.
113
118
.
22.
Birk
,
A.
, and
Carpin
,
S.
,
2006
, “
Merging Occupancy Grid Maps From Multiple Robots
,”
Proc. IEEE
,
94
(
7
), pp.
1384
1397
.
23.
Rooker
,
M. N.
, and
Birk
,
A.
,
2007
, “
Multi-Robot Exploration Under the Constraints of Wireless Networking
,”
Control Eng. Pract.
,
15
(
4
), pp.
435
445
.
24.
Fox
,
D.
,
Ko
,
J.
,
Konolige
,
K.
,
Limketkai
,
B.
,
Schulz
,
D.
, and
Stewart
,
B.
,
2006
, “
Distributed Multirobot Exploration and Mapping
,”
Proc. IEEE
,
94
(
7
), pp.
1325
1339
.
25.
Wurm
,
K. M.
,
Stachniss
,
C.
, and
Burgard
,
W.
,
2008
, “
Coordinated Multi-Robot Exploration Using a Segmentation of the Environment
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22
,
IEEE
, pp.
1160
1165
.
26.
Quigley
,
M.
,
Conley
,
K.
,
Gerkey
,
B.
,
Faust
,
J.
,
Foote
,
T.
,
Leibs
,
J.
,
Wheeler
,
R.
, and
Ng
,
A. Y.
,
2009
, “
Ros: An Open-Source Robot Operating System
,”
ICRA Workshop on Open Source Software
, Vol.
3
,
Kobe, Japan
,
May 12
, p.
5
.
27.
Brudnak
,
M.
,
Nunez
,
P.
, and
Reid
,
A.
,
2002
, “
Real-Time, Distributed, Unmanned Ground Vehicle Dynamics and Mobility Simulation
,”
SAE International
.
28.
Barnes
,
L.
,
Fields
,
M.
, and
Valavanis
,
K.
,
2007
, “
Unmanned Ground Vehicle Swarm Formation Control Using Potential Fields
,”
2007 Mediterranean Conference on Control & Automation
,
Athens, Greece
,
June 27
,
IEEE
, pp.
1
8
.
29.
Saad
,
E.
,
Vian
,
J.
,
Clark
,
G.
, and
Bieniawski
,
S.
,
2009
, “
Vehicle Swarm Rapid Prototyping Testbed
,”
AIAA Infotech Aerospace Conference and AIAA Unmanned ·· · Unlimited Conference
,
Seattle, WA
,
July 21
, p.
1824
.
30.
Montemerlo
,
M.
,
Roy
,
N.
, and
Thrun
,
S.
,
2003
, “
Perspectives on Standardization in Mobile Robot Programming: The Carnegie Mellon Navigation (Carmen) Toolkit
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453)
,
Las Vegas, NV
,
Oct. 27
, Vol.
3
,
IEEE
, pp.
2436
2441
.
31.
Atyabi
,
A.
,
Anderson
,
T. A.
,
Treharne
,
K.
, and
Powers
,
D. M.
,
2010
, “
Magician Simulator
,”
11th International Conference on Control, Automation, Robotics and Vision (ICARCV 2010)
,
Singapore
,
Dec. 7
, pp.
1
16
.
32.
Senthilkumar
,
K.
, and
Bharadwaj
,
K. K.
,
2012
, “
Multi-Robot Exploration and Terrain Coverage in an Unknown Environment
,”
Rob. Auton. Syst.
,
60
(
1
), pp.
123
132
.
33.
Jezdimirović
,
M.
,
Milinović
,
M.
,
Janković
,
R.
,
Jeremić
,
O.
, and
Pavić
,
M.
,
2013
, “
Basic Mathematical Model and Simplified Computer Simulation of Swarming Tactics for Unmanned Ground Combat Platforms
,”
Sci. Tech. Rev.
,
63
(
1
), pp.
17
24
.
34.
Krajzewicz
,
D.
,
Erdmann
,
J.
,
Behrisch
,
M.
, and
Bieker
,
L.
,
2012
, “
Recent Development and Applications of Sumo-Simulation of Urban Mobility
,”
Int. J. Adv. Syst. Measure.
,
5
(
3–4
), pp.
128
138
.
35.
Shao
,
K.
,
Zheng
,
J.
, and
Huang
,
K.
,
2019
, “
Robust Active Steering Control for Vehicle Rollover Prevention
,”
Int. J. Model. Identif. Control
,
32
(
1
), pp.
70
84
.
36.
Yan
,
C.
,
Shao
,
K.
,
Wang
,
X.
,
Zheng
,
J.
, and
Liang
,
B.
,
2021
, “
Reference Governor-Based Control for Active Rollover Avoidance of Mobile Robots
,”
2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Melbourne, Australia
,
Oct. 17
,
IEEE
, pp.
429
435
.
37.
Feierle
,
A.
,
Rettenmaier
,
M.
,
Zeitlmeir
,
F.
, and
Bengler
,
K.
,
2020
, “
Multi-Vehicle Simulation in Urban Automated Driving: Technical Implementation and Added Benefit
,”
Information
,
11
(
5
), p.
272
.
38.
Barciś
,
A.
,
Barciś
,
M.
, and
Bettstetter
,
C.
,
2019
, “
Robots That Sync and Swarm: A Proof of Concept in Ros 2
,”
2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
,
New Brunswick, NJ
,
Aug. 22
,
IEEE
, pp.
98
104
.
39.
Nieto-Granda
,
C.
,
Rogers III
,
J. G.
, and
Christensen
,
H. I.
,
2014
, “
Coordination Strategies for Multi-Robot Exploration and Mapping
,”
Int. J. Rob. Res.
,
33
(
4
), pp.
519
533
.
40.
Gerkey
,
B.
,
Vaughan
,
R. T.
, and
Howard
,
A.
,
2003
, “
The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems
,”
Proceedings of the 11th International Conference on Advanced Robotics
,
Coimbra, Portugal
,
June 30
, Vol.
1
,
Citeseer
, pp.
317
323
.
41.
Brabbs
,
J.
,
Haynes
,
B.
, and
Stanko
,
T.
,
2020
, “
Using a Gaming Engine for Autonomous Vehicle Modeling and Simulation
,”
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
,
Novi, MI
,
Aug. 11
, pp.
11
13
.
42.
Durst
,
P. J.
,
Goodin
,
C.
,
Cummins
,
C.
,
Gates
,
B.
,
Mckinley
,
B.
,
George
,
T.
,
Rohde
,
M. M.
,
Toschlog
,
M. A.
, and
Crawford
,
J.
,
2012
, “
A Real-Time, Interactive Simulation Environment for Unmanned Ground Vehicles: The Autonomous Navigation Virtual Environment Laboratory (anvel)
,”
2012 Fifth International Conference on Information and Computing Science (ICIC)
,
Liverpool, UK
,
July 24
,
IEEE
, pp.
7
10
.
43.
Barlow
,
M.
, and
Garratt
,
M.
,
2020
, “
Autonomous Recognition of Collective Behaviour in Robot Swarms
,”
AI 2020: Advances in Artificial Intelligence: 33rd Australasian Joint Conference
, Vol.
12576
, Canberra, ACT, Nov. 29–30,
Springer Nature
, p.
281
.
44.
Rooban
,
S.
,
Suraj
,
S. D.
,
Vali
,
S. B.
, and
Dhanush
,
N.
,
2021
, “
Coppeliasim: Adaptable Modular Robot and Its Different Locomotions Simulation Framework
,”
Mater. Today: Proc.
,
1
(
1
), pp.
1
7
.
45.
Dosovitskiy
,
A.
,
Ros
,
G.
,
Codevilla
,
F.
,
López
,
A.
, and
Koltun
,
V.
,
2017
, “
Carla: An Open Urban Driving Simulator
,”
Proceedings of Machine Learning Research
,
Mountain View, CA
,
Nov. 13
.
46.
2021, OpenScenario, https://www.asam.net/standards/detail/openscenario/, Accessed July 1, 2021.
47.
Lee
,
T.-K.
,
Wang
,
T.-W.
,
Wu
,
W.-X.
,
Kuo
,
Y.-C.
,
Huang
,
S.-H.
,
Wang
,
G.-S.
,
Lin
,
C.-Y.
,
Chen
,
J.-J.
, and
Tseng
,
Y.-C.
,
2019
, “
Building a V2x Simulation Framework for Future Autonomous Driving
,”
2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS)
,
Matsue, Japan
,
Sept. 18
,
IEEE
, pp.
1
6
.
48.
Goodin
,
C.
,
Prevost
,
Z.
, and
Lemasson
,
B.
,
2015
, “
Simulation of Biologically-Inspired Control Algorithms for Teams of Ground Vehicles
,”
Conference on Autonomous and Robotic Construction of Infrastructure
,
Ames, IA
,
June 2
, p.
105
.
49.
Goodin
,
C.
,
Carrillo
,
J. T.
,
McInnis
,
D. P.
,
Cummins
,
C. L.
,
Durst
,
P. J.
,
Gates
,
B. Q.
, and
Newell
,
B. S.
,
2017
, “
Unmanned Ground Vehicle Simulation With the Virtual Autonomous Navigation Environment
,”
2017 International Conference on Military Technologies (ICMT)
,
Brno, Czech Republic
,
May 31
,
IEEE
, pp.
160
165
.
50.
Kuru
,
K.
, and
Khan
,
W.
,
2020
, “
A Framework for the Synergistic Integration of Fully Autonomous Ground Vehicles With Smart City
,”
IEEE Access
,
9
, pp.
923
948
.
51.
Gorsich
,
D. J.
,
Jayakumar
,
P.
,
Cole
,
M. P.
,
Crean
,
C. M.
,
Jain
,
A.
, and
Ersal
,
T.
,
2018
, “
Evaluating Mobility Performance of Unmanned Ground Vehicles
,”
Tech. Rep., US Army Tardec Warren
.
52.
Novick
,
D. K.
,
2020
, “
Market Survey of Airborne Small Unmanned Aircraft System Sensors
,” February 2020, Tech. Rep., Sandia National Lab. (SNL-NM), Albuquerque, NM.
53.
Skoglund
,
M.
,
Petig
,
T.
,
Vedder
,
B.
,
Eriksson
,
H.
, and
Schiller
,
E. M.
,
2016
, “
Static and Dynamic Performance Evaluation of Low-Cost RTK GPS Receivers
,”
2016 IEEE Intelligent Vehicles Symposium (IV)
,
Gotenburg, Sweden
,
June 19
,
IEEE
, pp.
16
19
.
54.
Gropp
,
W.
,
Thakur
,
R.
, and
Lusk
,
E.
,
1999
,
Using MPI-2: Advanced Features of the Message Passing Interface
,
MIT Press
,
Cambridge, MA
.
55.
Rankin
,
A.
,
Huertas
,
A.
, and
Matthies
,
L.
,
2005
, “
Evaluation of Stereo Vision Obstacle Detection Algorithms for Off-Road Autonomous Navigation
,”
Tech. Rep., NASA-JPL
.
56.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybernet.
,
4
(
2
), pp.
100
107
.
57.
Weide
,
H.
,
2018
, “
A-star
,” https://github.com/hjweide/pyastar2d
58.
Hu
,
X.
,
Chen
,
L.
,
Tang
,
B.
,
Cao
,
D.
, and
He
,
H.
,
2018
, “
Dynamic Path Planning for Autonomous Driving on Various Roads With Avoidance of Static and Moving Obstacles
,”
Mech. Syst. Signal Process.
,
100
, pp.
482
500
.
59.
Coulter
,
R. C.
,
1992
, “
Implementation of the Pure Pursuit Path Tracking Algorithm
,” Tech. Rep., Robotics INST, Carnegie-Mellon UNIV, Pittsburgh, PA.
60.
Matsumura
,
S.
,
Omatu
,
S.
, and
Higasa
,
H.
,
1993
, “
Speed Control of an Electric Vehicle System Using PID Type Neurocontroller
,”
Proceedings of 1993 International Conference on Neural Networks (IJCNN-93)
, Vol.
1
,
Nagoya, Japan
,
Oct. 25
,
IEEE
, pp.
661
664
.
61.
Goodin
,
C.
,
Carruth
,
D.
,
Doude
,
M.
, and
Hudson
,
C.
,
2019
, “
Predicting the Influence of Rain on Lidar in Adas
,”
Electronics
,
8
(
1
), p.
89
.
62.
Dabbiru
,
L.
,
Goodin
,
C.
,
Scherrer
,
N.
, and
Carruth
,
D.
,
2020
, “
Lidar Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN)
,”
SAE Int. J. Adv. Current Pract. Mobil.
,
2
(
2020-01-0696
), pp.
3288
3292
.
63.
Foroutan
,
M.
,
Tian
,
W.
, and
Goodin
,
C. T.
,
2020
, “
Assessing Impact of Understory Vegetation Density on Solid Obstacle Detection for Off-Road Autonomous Ground Vehicles
,”
ASME Lett. Dyn. Syst. Control
,
1
(
2
), p.
021008
.
64.
Wald
,
I.
,
Woop
,
S.
,
Benthin
,
C.
,
Johnson
,
G. S.
, and
Ernst
,
M.
,
2014
, “
Embree: A Kernel Framework for Efficient CPU Ray Tracing
,”
ACM Trans. Graph.
,
33
(
4
), p.
143
.
65.
Creighton
,
D. C.
,
McKinley
,
G. B.
,
Jones
,
R. A.
, and
Ahlvin
,
R. B.
,
2009
, “
Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module
,”
Tech. Rep., Engineer Research and Development Center, Vicksburg, MS, Geotechnical and Structural Labaoratory
.
66.
Park
,
H. C.
, and
Baek
,
N.
,
2020
, “Design of Selfengine: A Lightweight Game Engine,”
Information Science and Applications
,
H.
Kim
,
K. J.
Kim
, and
S.
Park
, eds.,
Springer
,
New York
, pp.
223
227
.
67.
Davis
,
D. C.
,
1975
, “
A Radial-Spring Terrain-eEveloping Tire Model
,”
Veh. Syst. Dyn.
,
4
(
1
), pp.
55
69
.
68.
Mason
,
G. L.
,
Williams
,
J. M.
,
Vahedifard
,
F.
, and
Priddy
,
J. D.
,
2018
, “
A Unified Equation for Predicting Traction for Wheels on Sand Over a Range of Braked, Towed, and Powered Operations
,”
J. Terramech.
,
79
, pp.
33
40
.
69.
Williams
,
J. M.
,
Vahedifard
,
F.
,
Howard
,
I. L.
,
Borazjani
,
A.
,
Mason
,
G. L.
, and
Priddy
,
J. D.
,
2019
, “
Mobility Guidance for Tracked Vehicles on Fine-Grained Soil From Historical Full-Scale Test Data in Drove 2.0
,”
J. Terramech.
,
84
, pp.
1
12
.
70.
Moore
,
M.
,
Ray
,
P.
,
Hudson
,
C.
,
Goodin
,
C.
,
Doude
,
M.
,
Carruth
,
D.
,
Ewing
,
M.
, and
Towne
,
B.
,
2020
, “
Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo
,”
Proc. Ground Veh. Syst. Eng. Technol.
,
1
(
1
), pp.
13
15
.
71.
Islam
,
F.
,
Nabi
,
M.
,
Farhad
,
M. M.
,
Peranich
,
P.
,
Ball
,
J. E.
, and
Goodin
,
C.
,
2021
, “
Evaluating Performance of Extended Kalman Filter Based Adaptive Cruise Control Using PID Controller
,”
Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2021
,
Orlando, FL
,
Apr. 12
, Vol.
11748
,
International Society for Optics and Photonics
, p.
1174807
.
72.
Moh
,
M.
, and
Nguyen
,
B.
,
2003
, “
Qos-Guaranteed One-to-Many and Many-to-Many Multicast Routing
,”
Comput. Commun.
,
26
(
7
), pp.
652
669
.
73.
Dagum
,
L.
, and
Menon
,
R.
,
1998
, “
Openmp: An Industry Standard API for Shared-Memory Programming
,”
IEEE Comput. Sci. Eng.
,
5
(
1
), pp.
46
55
.
74.
Weigeshoff
,
W. R.
,
1992
, “
An Automated Reconnaissance and Surveillance Planning Tool
,”
Tech. Rep.
,
Naval Postgraduate School
,
Monterey, CA
.
75.
Lee
,
M. G.
,
Park
,
Y. K.
,
Jung
,
K. K.
, and
Yoo
,
J. J.
,
2011
, “
Estimation of Fuel Consumption Using In-Vehicle Parameters
,”
Int. J. u- and e-Serv. Sci. Technol.
,
4
(
4
), pp.
37
46
.
76.
Dollar
,
P.
,
Wojek
,
C.
,
Schiele
,
B.
, and
Perona
,
P.
,
2011
, “
Pedestrian Detection: An Evaluation of the State of the Art
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
4
), pp.
743
761
.
77.
Ulrich
,
I.
, and
Borenstein
,
J.
,
1998
, “
Vfh+: Reliable Obstacle Avoidance for Fast Mobile Robots
,”
Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
,
May 16
, Vol.
2
,
IEEE
, pp.
1572
1577
.
78.
Kaparias
,
I.
,
Bell
,
M. G.
, and
Belzner
,
H.
,
2008
, “
A New Measure of Travel Time Reliability for In-Vehicle Navigation Systems
,”
J. Intell. Trans. Syst.
,
12
(
4
), pp.
202
211
.
79.
Mun
,
J.
,
2008
,
Advanced Analytical Models: Over 800 Models and 300 Applications From the Basel II Accord to Wall Street and Beyond
, Vol. 419,
John Wiley & Sons
,
Hoboken, NJ
.
80.
Zhou
,
X.-H.
,
Gao
,
S.
, and
Hui
,
S. L.
,
1997
, “
Methods for Comparing the Means of Two Independent Log-Normal Samples
,”
Biometrics
,
53
(
3
), pp.
1129
1135
.
81.
Olsson
,
U.
,
2005
, “
Confidence Intervals for the Mean of a Log-Normal Distribution
,”
J. Stat. Educ.
,
13
(
1
), pp.
161
166
.
82.
Larson
,
J.
, and
Trivedi
,
M.
,
2011
, “
Lidar Based Off-Road Negative Obstacle Detection and Analysis
,”
2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)
,
Washington, DC
,
Oct. 5
,
IEEE
, pp.
192
197
.
83.
Nahin
,
P. J.
,
2013
, “18. Average Distances on a Square,”
Will You Be Alive 10 Years From Now
,
P. J.
Nahin
, ed.,
Princeton University Press
,
Princeton, NJ
, pp.
126
138
.
You do not currently have access to this content.