Abstract

Quantum computing and quantum information science is a burgeoning engineering field at the cusp of solving challenging robotic applications. This paper introduces a hybrid (gate-based) quantum computing and classical computing architecture to solve the motion propagation problem for a robotic system. This paper presents the quantum-classical architecture for linear differential equations defined by two types of linear operators: unitary and non-unitary system matrices, thereby solving any linear ordinary differential equations. The ability to encode information using bits or qubits—is essential in any computation problem. The results in this paper also introduce two novel approaches to encoding any arbitrary state vector or any arbitrary linear operator using qubits. Unlike other algorithms that solve ordinary differential equations (ODEs) using purely quantum or classical architectures, the ODE solver presented in this paper leverages the best of quantum and classical computing paradigms.

References

1.
Palca
,
J.
,
2021
, “Success! NASA’s Ingenuity Makes 1st Powered Flight on Mars,” https://www.npr.org/2021/04/19/985588253/success-nasas-ingenuity-makes-first-powered-flight-on-mars.
2.
Balaram
,
B.
,
Canham
,
T.
,
Duncan
,
C.
,
Grip
,
H. F.
,
Johnson
,
W.
,
Maki
,
J.
,
Quon
,
A.
,
Stern
,
R.
, and
Zhu
,
D.
,
2018
, “
Mars Helicopter Technology Demonstrator
,”
2018 AIAA Atmospheric Flight Mechanics Conference
,
Kissimmee, FL
,
Jan. 8–12
.
3.
Dormand
,
J.
, and
Prince
,
P.
,
1980
, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
4.
Moler
,
C.
, and
Van Loan
,
C.
,
2003
, “
Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later
,”
SIAM Rev.
,
45
(
1
), pp.
3
49
.
5.
Gambetta
,
J.
,
2022
, “IBM Quantum Roadmap to Build Quantum-Centric Supercomputers,” https://research.ibm.com/blog/ibm-quantum-roadmap-2025.
6.
Harrow
,
A. W.
,
Hassidim
,
A.
, and
Lloyd
,
S.
,
2009
, “
Quantum Algorithm for Linear Systems of Equations
,”
Phys. Rev. Lett.
,
103
(
15
).
7.
Petschnigg
,
C.
,
Brandstötter
,
M.
,
Pichler
,
H.
,
Hofbaur
,
M.
, and
Dieber
,
B.
,
2019
, “
Quantum Computation in Robotic Science and Applications
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
803
810
.
8.
Zanger
,
B.
,
Mendl
,
C. B.
,
Schulz
,
M.
, and
Schreiber
,
M.
,
2021
, “
Quantum Algorithms for Solving Ordinary Differential Equations Via Classical Integration Methods
,”
Quantum
,
5
, p.
502
.
9.
Xin
,
T.
,
Wei
,
S.
,
Cui
,
J.
,
Xiao
,
J.
,
Arrazola
,
I. N.
,
Lamata
,
L.
,
Kong
,
X.
,
Lu
,
D.
,
Solano
,
E.
, and
Long
,
G.
,
2020
, “
Quantum Algorithm for Solving Linear Differential Equations: Theory and Experiment
,”
Phys. Rev. A
,
101
, p.
032307
.
10.
Nielsen
,
M. A.
, and
Chuang
,
I. L.
,
2010
,
Quantum Computation and Quantum Information
,
Cambridge University Press
,
Cambridge, UK
.
11.
Hidary
,
J.
,
2021
,
Quantum Computing: An Applied Approach
,
Springer International Publishing
.
12.
H. Golub
,
G.
,
2013
,
Matrix Computation
,
The John Hopkins University Press
,
Baltimore, MD
.
13.
Schwinger
,
J.
,
1960
, “
Unitary Operator Bases
,”
Proc. Natl. Acad. Sci.
,
46
, pp.
570
579
.
You do not currently have access to this content.