Abstract

This paper proposes a mechanical system for a masonry robot comprising four parts: an omnidirectional mobile platform, a lifting platform, a six-degrees-of-freedom manipulator, and a grasping mechanism. The robot is specifically designed to carry out brick masonry on construction sites and is equipped to move bricks smoothly with slurry to their intended location. To prevent mortar from being shaken off the brick, the grasping mechanism is required to maintain optimal velocity and optimized acceleration. To implement online trajectory planning with velocity and acceleration constraints, the paper suggests an approach based on screw theory for resolving the inverse kinematics of the masonry robot. This method allows the inverse kinematic equations to be used to determine a unique solution for all joints of the redundant driver of the masonry robot. The approach and strategy are validated through numerical simulations of trajectory planning using a fifth-degree polynomial.

References

1.
Sun
,
P.
,
Li
,
Y.
,
Wang
,
Z.
,
Chen
,
K.
,
Chen
,
B.
, and
Zeng
,
X.
,
2020
, “
Inverse Displacement Analysis of a Novel Hybrid Humanoid Robotic arm
,”
Mech. Mach. Theory
,
143
, p.
103743
.
2.
Bader
,
A. M.
, and
Maciejewski
,
A. A.
,
2020
, “
Maximizing the Failure-Tolerant Workspace Area for Planar Redundant Robots
,”
Mech. Mach. Theory
,
143
, p.
103635
.
3.
Xu
,
W.
,
Zhang
,
J.
,
Liang
,
B.
, and
Li
,
B.
,
2016
, “
Singularity Analysis and Avoidance for Robot Manipulators With Nonspherical Wrists
,”
IEEE Trans. Ind. Electron.
,
63
(
1
), pp.
277
290
.
4.
Corinaldi
,
D.
,
Callegari
,
M.
, and
Angeles
,
J.
,
2018
, “
Singularity-Free Path-Planning of Dexterous Pointing Tasks for a Class of Spherical Parallel Mechanisms
,”
Mech. Mach. Theory
,
128
, pp.
47
57
.
5.
Tolani
,
D.
, and
Badler
,
N.
,
1996
, “
Real-time Inverse Kinematics of the Human arm
,”
Presence
,
5
(
4
), p.
393
401
.
6.
Xia
,
J.
,
Jiang
,
Z.
,
Liu
,
H.
, and
Cai
,
H.
,
2014
, “
Analytical Inverse Kinematic Computation for Anthropomorphic Manipulator Based on Human-Like Motion Optimization and Maximum Reachable Region Optimization
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)
,
Bali, Indonesia
,
Dec. 5–10
, pp.
2292
2297
.
7.
Sukhan
,
L.
, and
Bejczy
,
A. K.
,
1991
, “
Redundant arm Kinematic Control Based on Parameterization
,”
Proceedings of the IEEE International Conference on Robotics and Automation 1991
,
Sacramento, CA
, Apr. 9–11, Vol. 1, pp.
458
465
.
8.
Tong
,
Y.
,
Liu
,
J.
,
Liu
,
Y.
, and
Yuan
,
Y.
,
2021
, “
Analytical Inverse Kinematic Computation for 7-DOF Redundant Sliding Manipulators
,”
Mech. Mach. Theory
,
155
, p.
104006
.
9.
Gallardo-Alvarado
,
J.
, and
Rico-Martinez
,
J. M.
,
2009
, “
Kinematics of a Hyper-Redundant Manipulator by Means of Plücker Coordinate
,”
Proc. Inst. Mech. Eng. K: J. Multi-Body Dyn.
,
223
(
4
), pp.
325
334
.
10.
Chan
,
T.
, and
Dubey
,
R.
,
2022
, “
A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
2
), pp.
286
292
.
11.
Shimizu
,
M.
,
2008
, “
Analytical Inverse Kinematic Computation for 7-DOF Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
1131
1142
.
12.
Kim
,
J.
,
2011
, “
Kinematics Analysis and Motion Planning for a 7-dof Redundant Industrial Robot Manipulator
,”
Proceedings of the 11th International Conference on Control, Automation, and Systems
,
Gyeonggi-do, South Korea
, Oct. 26–29, pp.
522
527
.
13.
Huang
,
S.
, and
Schimmels
,
J.
,
2019
, “
Geometry Based Synthesis of Planar Compliances With Redundant Mechanisms Having Five Compliant Components
,”
Mech. Mach. Theory
,
134
, pp.
645
666
.
14.
Cheng
,
M.
,
Han
,
Z.
, and
Ding
,
R.
,
2021
, “
Development of a Redundant Anthropomorphic Hydraulically Actuated Manipulator With a Roll-Pitch-Yaw Spherical Wrist
,”
Front. Mech. Eng.
,
16
(
4
), pp.
698
710
.
15.
Kuhlemann
,
I.
,
Schweikard
,
A.
, and
Jauer
,
P.
,
2016
, “
Robust Inverse Kinematics by Configuration Control for Redundant Manipulators With Seven DOF
,”
Proceedings of the 2016 2nd International Conference on Control, Automation and Robotics (ICCAR)
,
Hong Kong, China
, Apr. 28–30, IEEE, pp.
49
55
.
16.
An
,
H.
,
Clement
,
W.
, and
Reed
,
B.
,
2014
, “
Analytical Inverse Kinematic Solution With Self-Motion Constraint for the 7-DOF Restore Robot Arm
,”
Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Besacon, France
, July 8–11, pp.
1325
1330
.
17.
Li
,
X.
,
Lan
,
Y.
, and
Jiang
,
P.
,
2022
, “
An Efficient Computation for Energy Optimization of Robot Trajectory
,”
IEEE Trans. Ind. Electron.
,
69
(
11
), pp.
11436
11446
.
18.
Park
,
H.
,
Kwak
,
B.
, and
Bae
,
J.
,
2018
, “
Inverse Kinematics Analysis and COG Trajectory Planning Algorithms for Stable Walking of a Quadruped Robot With Redundant DOFs
,”
J. Bionic Eng.
,
15
(
4
), pp.
610
622
.
19.
Ram
,
R.
,
Pathak
,
P.
, and
Junco
,
S.
,
2019
, “
Inverse Kinematics of Mobile Manipulator Using Bidirectional Particle Swarm Optimization by Manipulator Decoupling
,”
Mech. Mach. Theory
,
131
, pp.
385
405
.
20.
Singh
,
G.
, and
Banga
,
V.
,
2022
, “
Combinations of Novel Hybrid Optimization Algorithms-Based Trajectory Planning Analysis for an Industrial Robotic Manipulators
,”
J. Field Rob.
,
39
(
5
), pp.
650
674
.
21.
Thai
,
P.
, and
Nguyen
,
Q.
,
2022
, “
Inverse Kinematics Analysis of 7 DOF Collaborative Robot by Using Coordinate and Velocity Projection Methods
,”
Regional Conference in Mechanical Manufacturing Engineering
,
Hanoi, Vietnam
,
June
.
22.
Zeng
,
Z.
,
Chen
,
Z.
, and
Shu
,
G.
,
2018
, “
Optimization of Analytical Inverse Kinematic Solution for Redundant Manipulators Using GA-PSO Algorithm
,”
Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS)
,
St. Petersburg, Russia
, May 15–18, pp.
446
451
.
23.
Kumar
,
J.
, and
Dutta
,
A.
,
2021
, “
Learning-Based Motion Planning of a 14-DOF Biped Robot on 3D Uneven Terrain Containing a Ditch
,”
Int. J. Human. Rob.
,
18
(
6
).
24.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks 1995
,
Perth, WA, Australia
, Nov. 27–Dec. 1, pp.
1942
1948
.
25.
Bharathi
,
C.
,
Rekha
,
D.
, and
Vijayakumar
,
V.
,
2017
, “
Genetic Algorithm Based Demand Side Management for Smart Grid
,”
Wirel. Pers. Commun.
,
93
(
2
), pp.
481
502
.
26.
Zeng
,
Z.
,
Chen
,
Z.
,
Shu
,
G.
, and
Chen
,
Q.
,
15-18 May 2018
, “
Optimization of Analytical Inverse Kinematic Solution for Redundant Manipulators Using GA-PSO Algorithm
,”
Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS)
,
St. Petersburg, Russia
.
27.
Dahm
,
P.
, and
Joublin
,
F.
,
2016
, “
Closed Form Solution for the Inverse Kinematics of a Redundant Robot Arm Compute
,”
Comput. Aided Geom. Des.
,
47
, pp.
163
171
.
28.
Rout
,
A.
,
Deepak
,
B.
, and
Biswal
,
B.
,
2021
, “
Trajectory Generation of an Industrial Robot With Constrained Kinematic and Dynamic Variations for Improving Positional Accuracy
,”
Int. J. Appl. Metaheuristic Comput.
,
12
(
3
), pp.
163
179
.
29.
Tangpattanakul
,
P.
, and
Artrit
,
P.
,
2009
, “
Minimum-Time Trajectory of Robot Manipulator Using Harmony Search Algorithm
,”
Proceedings of the 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
, pp.
354
357
.
You do not currently have access to this content.