The dynamics of intraventricular blood flow, i.e. its rapid evolution, implies the rise of intraventricular pressure gradients (IPGs) characteristic of the inertia-driven events as experimentally observed by Pasipoularides (1987, 1990) and by Falsetti et al. (1986). The IPG time course is determined by the wall contraction which, in turn, depends on the load applied, namely the intraventricular pressure which is the sum of the aortic pressure (i.e., the systemic net response) and the IPG. Hence the IPGs account, at least in part, for the wall movement. These considerations suggest the necessity of a comprehensive analysis of the ventricular mechanics involving both ventricular wall mechanics and intraventricular fluid dynamics as each domain determines the boundary conditions of the other. This paper presents a computational approach to ventricular ejection mechanics based on a fluid-structure interaction calculation for the evaluation of the IPG time course. An axisymmetric model of the left ventricle is utilized. The intraventricular fluid is assumed to be Newtonian. The ventricle wall is thin and is composed of two sets of counter-rotating fibres which behave according to the modified version of Wong’s sarcomere model proposed by Montevecchi and Pietrabissa and Pietrabissa et al. (1987, 1991). The full Navier-Stokes equations describing the fluid domain are solved using Galerkin’s weighted residual approach in conjunction with finite element approximation (FIDAP). The wall displacement is solved using the multiplane quasi-Newton method proposed by Buzzi Ferraris and Tronconi (1985). The interaction procedure is performed by means of an external macro which compares the flow fields and the wall displacement and appropriately modifies the boundary conditions to reach the simultaneous and congruous convergence of the two problems. The results refer to a simulation of the ventricular ejection with a heart rate of 72 bpm. In this phase the ventricle ejects 61 cm3 (ejection fraction equal to 54 percent) and the ventricular pressure varies from 78 mmHg to 140 mmHg. The IPG show an oscillating behaviour with two major peaks at the beginning (11.09 mmHg) and at the end (4.32) of the ejection phase, when the flow rate hardly changes, according to the experimental data. Furthermore the wall displacement, the wall stress and strain, the pressure and velocity fields are calculated and reported.

1.
Arts
T.
, and
Reneman
R. S.
,
1978
, “
A Model of the Mechanics of the Left Ventricle
,”
Ann. Biomed. Engng.
, Vol.
7
, pp.
299
318
.
2.
Beyar
R.
,
Ben Ari
R.
,
Gibbson Kroeker
C. A.
,
Tyberg
J. V.
, and
Sideman
S.
,
1993
, “
Effect of Interconnecting Collagen Fibres on Left Ventricular Function and Intraventricular Compression
,”
Cardiovasc. Res.
, Vol.
27
, pp.
2254
63
.
3.
Bovendeerd
P. H. M.
,
Arts
T.
,
Huyghe
J. M.
,
Van Campen
D. H.
, and
Reneman
R. S.
,
1992
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study
,”
J. Biomechanics
, Vol.
25
, pp.
1129
1140
.
4.
Buzzi Ferraris
G.
, and
Tronconi
E.
,
1986
, “
Bunsli—A Fortran Program for Solution of System of Nonlinear Algebraic Equations
,”
Comput. Chem. Engng.
, Vol.
2
, pp.
129
141
.
5.
Erbel
R.
,
Henkel
B.
,
Ostlander
C.
,
Clas
W.
,
Brennecke
R.
, and
Meyer
J.
,
1985
, “
Normalwerte fur die zweidimensionale Echokardiographie
,”
Dtsch. med, Wschr.
, Vol.
110
, pp.
123
128
.
6.
Falsetti
H. L.
,
Verani
M. S.
,
Chen
C. J.
, and
Cramer
J. A.
,
1980
, “
Regional Pressure Differences in the Left Ventricle
,”
Cath. Cardiovasc. Diag.
, Vol.
6
, pp.
123
134
.
7.
Georgiadis
J. G.
,
Mingyu
W.
, and
Pasipoulardies
A.
,
1992
, “
Computational Fluid Dynamics of Left Ventricular Ejection
,”
Ann. Biomed. Eng.
, Vol.
20
, pp.
81
97
.
8.
Hawthorne
E. W.
,
1961
, “
Instantaneous Dimensional Changes of the Left Ventricle in Dogs
,”
Circ. Res.
, Vol.
9
, pp.
110
119
.
9.
Horowitz, A., 1991, “Structural Considerations in Formulating Material Laws for the Myocardium,” in Glass, L., Hunter, P., and McCulloch, A., eds., Theory of Heart, Springer-Verlag, New York, pp. 31–58.
10.
Julian
E. F.
,
1969
, “
Activation in Skeletal Muscle Contraction Model with a Modification for Insect Fibrillar Muscle
,”
Biophys. J.
, Vol.
9
, pp.
547
570
.
11.
Mantero
S.
,
Pietrabissa
R.
, and
Fumero
R.
,
1992
, “
The Coronary Bed and its Role in the Cardiovascular System: A Review and an Introductory Single-Branch Model
,”
J. Biomed. Engng.
, Vol.
14
, pp.
109
115
.
12.
Montevecchi
F. M.
, and
Pietrabissa
R.
,
1987
, “
A Model of Multicomponent Cardiac Fibre
,”
J. Biomechanics
, Vol.
20
, pp.
365
370
.
13.
Nevo
E.
, and
Lanir
Y.
,
1989
, “
Structural Finite Deformation Model of the Left Ventricle During Diastole and Systole
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, pp.
342
349
.
14.
Pasipoularides
A.
,
1990
, “
Clinical Assessment of Ventricular Ejection Dynamics With and Without Outflow Obstruction
,”
J. Am. Coll. Cardiol.
, Vol.
15
, pp.
859
882
.
15.
Pasipoularides
A.
,
Murgo
J. P.
,
Miller
J. W.
, and
Craig
W. E.
,
1987
, “
Nonobstructive Left Ventricular Ejection Pressure Gradients in Man
,”
Circ. Res.
, Vol.
61
, pp.
220
227
.
16.
Peskin
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart Method
,”
J. Comp. Physics
, Vol.
25
, pp.
220
252
.
17.
Pietrabissa
R.
,
Montevecchi
F. M.
, and
Fumero
R.
,
1991
, “
Mechanical Behaviour of a Model of a Multicomponent Cardiac Fibre
,”
J. Biomed. Eng.
, Vol.
13
, pp.
407
413
.
18.
Pollack, G. H., and Krueger, J. W., 1978, “Myocardial Sarcomere Mechanics: Some Parallel with Skeletal Muscle,” in Baan, Y., Noordergraff, A., and Raines, J., eds., Cardiovascular System Dynamics, MIT Press, Cambridge, pp. 3–10.
19.
Ray
G.
,
Ghista
D. N.
, and
Sandler
H.
,
1979
, “
Left Ventricular Analysis for Characterizing Normal and Diseased Myocardium
,”
Adv. Cardiovasc. Phys.
, Vol.
4
, pp.
161
178
.
20.
Semelka
R. C.
,
Tomei
E.
,
Wagner
S.
,
Mayo
J.
,
Kondo
C.
,
Suzuki
J.
,
Caputo
G. R.
, and
Higgins
C. B.
,
1990
, “
Normal Left Ventricular Dimensions and Function: Interstudy Reproducibility of Measurements with Cine MR Imaging
,”
Radiology
, Vol.
174
, pp.
763
768
.
21.
Schoephoerster
R. T.
,
Silva
L. C.
, and
Ray
G.
,
1994
, “
Evaluation of Left Ventricular Function Based on Simulated Systolic Flow Dynamics Computed from Regional Wall Motion
,”
J. Biomechanics
, Vol.
27
, pp.
125
136
.
22.
Sponitz
H. M.
,
Sonnenblick
E. H.
, and
Spiro
D.
,
1966
, “
Relation of Ultra-structure to Function in Intact Heart. Sarcomere Structure Relative to Pressure-Volume Curves of Intact Left Ventricle of Dog and Cat
,”
Circ. Res.
, Vol.
18
, pp.
49
66
.
23.
Taylor
T. W.
,
Haruka
O.
, and
Yamaguchi
T.
,
1993
, “
The Effect of Supravalvular Aortic Stenosis on Realistic Three-Dimensional Left Ventricular Blood Ejection
,”
Biorheology
, Vol.
30
, pp.
429
434
.
24.
Taylor
T. W.
,
Haruka
O.
, and
Yamaguchi
T.
,
1994
, “
Three-Dimensional Analysis of Left Ventricular Ejection Using Computational Fluid Dynamics
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
127
130
.
25.
Wang
C. Y.
, and
Sonnenblick
E. H.
,
1979
, “
Dynamic Pressure Distribution Inside a Spherical Ventricle
,”
J. Biomechanics
, Vol.
12
, pp.
9
12
.
26.
Wong, A. Y. K., 1974, “Application of Huxley’s Sliding Filament Theory to the Mechanics of Normal and Hypertrophical Cardiac Muscle,” in: Mirsky, I., ed., Cardiac Mechanics, Wiley, New York, pp. 411–437.
27.
Yoganathan
A. P.
,
Lemmon
J. D.
,
Kim
Y. H.
,
Walker
P. G.
,
Levine
R. A.
, and
Vesier
C. C.
,
1994
, “
A Computational Study of a Thin-Walled Three-Dimensional Left Ventricle During Early Diastole
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
307
314
.
28.
Yoran
C.
,
Covell
J. W.
, and
Ross
J.
,
1973
, “
Structural Basis for the Ascending Limb of Left Ventricular Function
,”
Circ. Res.
, Vol.
32
, pp.
297
303
.
This content is only available via PDF.
You do not currently have access to this content.