Using the biphasic theory for hydrated soft tissues (Mow et al., 1980) and a transversely isotropic elastic model for the solid matrix, an analytical solution is presented for the unconfined compression of cylindrical disks of growth plate tissues compressed between two rigid platens with a frictionless interface. The axisymmetric case where the plane of transverse isotropy is perpendicular to the cylindrical axis is studied, and the stress-relaxation response to imposed step and ramp displacements is solved. This solution is then used to analyze experimental data from unconfined compression stress-relaxation tests performed on specimens from bovine distal ulnar growth plate and chondroepiphysis to determine the biphasic material parameters. The transversely isotropic biphasic model provides an excellent agreement between theory and experimental results, better than was previously achieved with an isotropic model, and can explain the observed experimental behavior in unconfined compression of these tissues.

1.
Akizuki
S.
,
Mow
V. C.
,
Muller
F.
,
Pita
J. C.
,
Howell
D. S.
, and
Manicourt
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
:
379
392
.
2.
Armstrong
C. G.
,
Lai
W. M.
, and
Mow
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
106
:
165
173
.
3.
Bright
R. W.
,
Burstein
A. H.
, and
Elmore
S. M.
,
1974
, “
Epiphyseal Plate Cartilage: A Biomechanical and Histological Analysis of Failure Modes
,”
J. Bone Joint Surg.
,
56A
:
688
703
.
4.
Brighton
C. T.
,
1978
, “
Structure and Function of the Growth Plate
,”
Clin. Orthop. Rel. Res.
,
136
:
22
32
.
5.
Brown
T. D.
, and
Singerman
R. J.
,
1986
, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
,
19
:
597
605
.
6.
Buckwalter
J. A.
,
Mower
D.
,
Schafer
J.
,
Ungar
R.
,
Ginsberg
B.
, and
Moore
K.
,
1985
, “
Growth-Plate Chondrocyte Profiles and Their Orientation
,”
J. Bone Joint Surg.
,
67A
:
942
955
.
7.
Carter
D. R.
,
Orr
T. E.
,
Fyhrie
D. P.
, and
Schurman
D. J.
,
1987
, “
Influences of Mechanical Stress on Prenatal and Postnatal Skeletal Development
,”
Clin. Orthop. Rel. Res.
,
219
:
237
250
.
8.
Cohen, B., 1992, “Anisotropic Hydrated Soft Tissues in Finite Deformation and the Biomechanics of the Growth Plate,” Ph.D. thesis, Columbia University, New York.
9.
Cohen
B.
,
Chorney
G. S.
,
Phillips
D. P.
,
Dick
H. M.
, and
Mow
V. C.
,
1992
, “
Inhomogeneous and Anisotropic Mechanical Properties of Bovine Growth Plate and Chondroepiphysis
,”
Trans. Orthop. Res. Soc.
,
17
:
153
153
.
10.
Cohen
B.
,
Chorney
G. S.
,
Phillips
D. P.
,
Dick
H. M.
, and
Mow
V. C.
,
1994
, “
Compressive Stress-Relaxation Behavior of Bovine Growth Plate May Be Described by the Nonlinear-Biphasic Theory
,”
J. Orthop. Res.
,
12
:
804
813
.
11.
Gray
M. L.
,
Pizzanelli
A. M.
,
Grodzinsky
A. J.
, and
Lee
R. C.
,
1988
, “
Mechanical and Physicochemical Determinants of the Chondrocyte Biosynthetic Response
,”
J. Orthop. Res.
,
6
:
777
792
.
12.
Hoch
D. H.
,
Grodzinsky
A. J.
,
Koob
T. J.
,
Albert
M. L.
, and
Eyre
D. R.
,
1983
, “
Early Changes in Material Properties of Rabbit Articular Cartilage After Menisectomy
,”
J. Orthop. Res.
,
1
:
4
12
.
13.
Hunziker
E. B.
,
Schenk
R. K.
, and
Cruz-Orive
L. -M.
,
1987
, “
Quantitation of Chondrocyte Performance in Growth Plate Cartilage During Longitudinal Bone Growth
,”
J. Bone Joint Surg.
,
69A
:
162
173
.
14.
Jones, R. M., 1975, Mechanics of Composite Materials, Scripta, Washington, DC.
15.
Jurvelin
J. S.
,
Buschmann
M. D.
, and
Hunziker
E. B.
,
1995
, “
Characterization of the Equilibrium Response of Bovine Humeral Cartilage in Confined and Unconfined Compression
,”
Trans. Orthop. Res. Soc.
,
20
:
512
512
.
16.
Kim
Y. J.
,
Bonassar
L. J.
, and
Grodzinsky
A. J.
,
1995
, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
,
28
:
1055
1066
.
17.
Lai
W. M.
, and
Mow
V. C.
,
1980
, “
Drag Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
:
111
123
.
18.
Lanir
Y.
,
1987
, “
Biorheology and Fluid Flux in Swelling Tissues II. Analysis of Unconfined Compressive Response of Transversely Isotropic Cartilage Disc
,”
Biorheology
,
24
:
189
205
.
19.
Letts, R. M., 1988, “Compression Injuries of the Growth Plate,” in: Behavior of the Growth Plate, Uhthoff, H. K., and Wiley, J. J., eds., Raven Press, New York, pp. 111–118.
20.
Mak
A. F.
,
1986
, “
Unconfined Compression of Hydrated Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis
,”
Biorheology
,
23
:
371
383
.
21.
Mak
A. F.
,
Lai
W. M.
, and
Mow
V. C.
,
1987
, “
Biphasic Indentation of Articular Cartilage: I. Theoretical Analysis
,”
J. Biomech.
,
24
:
587
597
.
22.
Mizrahi
J.
,
Maroudas
A.
,
Lanir
Y.
,
Ziv
I.
, and
Webber
T. J.
,
1986
, “
The Instantaneous Deformation of Cartilage: Effects of Collagen Fiber Orientation and Osmotic Stress
,”
Biorheology
,
23
:
311
330
.
23.
Moen
C. T.
, and
Pelker
R. R.
,
1984
, “
Biomechanical and Histological Correlations in Growth Plate Failure
,”
J. Pediat. Orthop.
,
4
:
180
184
.
24.
Mow
V. C.
,
Kuei
S. C.
,
Lai
W. M.
, and
Armsfi-ong
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage: Theory and Experiments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
102
:
73
84
.
25.
Smith
J. W.
,
1962
, “
The Relationship of Epiphysial Plates to Stress in Some Bones of the Lower Limb
,”
J. Anat.
,
96
:
58
78
.
26.
Speer
D. P.
,
1982
, “
Collagenous Architecture of the Growth Plate and Perichondrial Ossification Groove
,”
J. Bone Joint Surg.
,
64A
:
399
407
.
27.
Spilker
R. L.
, and
Suh
J. -K.
,
1990
, “
Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Hydrated Soft Tissues
,”
Computers and Structures
,
35
:
425
439
.
28.
Spilker
R. L.
,
Suh
J. K.
,
Mow
V. C.
,
1990
, “
Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: A Finite Element Analysis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
,
112
:
138
149
.
29.
Woo
S. L. Y.
,
Akeson
W. H.
, and
Jemmott
G. F.
,
1976
, “
Measurements of Nonhomogeneous and Directional Mechanical Properties of Articular Cartilage in Tension
,”
J. Biomech.
,
9
:
785
791
.
30.
Yang
M.
, and
Taber
L. A.
,
1991
, “
The Possible Role of Poroelasticity in the Apparent Viscoelastic Behavior of Passive Cardiac Muscle
,”
J. Biomech.
,
24
:
587
597
.
This content is only available via PDF.
You do not currently have access to this content.