Aided by advancements in computer speed and modeling techniques, computational modeling of cardiac function has continued to develop over the past twenty years. The goal of the current study was to develop a computational model that provides blood–tissue interaction under physiologic flow conditions, and apply it to a thin-walled model of the left heart. To accomplish this goal, the Immersed Boundary Method was used to study the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology. The fluid mass and momentum conservation equations were solved using Patankar’s Semi-Implicit Method for Pressure Linked Equations (SIMPLE). A left heart model was developed to examine diastolic function, and consisted of the left ventricle, left atrium, and pulmonary flow. The input functions for the model included the pulmonary driving pressure and time-dependent relationship for changes in chamber tissue properties during the simulation. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions for validation. The inflow velocities through the mitral valve corresponded with clinical values (E-wave=74.4 cm/s, A-wave=43 cm/s, and E/A=1.73). The pressure traces for the atrium and ventricle, and the appearance of the ventricular flow fields throughout filling, agreed with those observed in the heart. In addition, the atrial flow fields could be observed in this model and showed the conduit and pump functions that current theory suggests. The ability to examine atrial function in the present model is something not described previously in computational simulations of cardiac function. [S0148-0731(00)01302-9]

1.
Taylor
,
T. W.
,
Okino
,
H.
, and
Yamaguchi
,
T.
,
1994
, “
Three-Dimensional Analysis of Left Ventricular Ejection Using Computational Fluid Dynamics
,”
ASME J. Biomech. Eng.
,
116
, pp.
127
130
.
2.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
,
1995
, “
Flow Patterns in Three-Dimensional Left Ventricular Systolic and Diastolic Flows Determined From Computational Fluid Dynamics
,”
Biorheology
,
32
, pp.
61
71
.
3.
Schoephoerster
,
R. T.
,
Silva
,
C. L.
, and
Ray
,
G.
,
1994
, “
Evaluation of Left Ventricular Function Based on Simulated Systolic Flow Dynamics Computed From Regional Wall Motion
,”
J. Biomech.
,
27
, pp.
125
136
.
4.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
, pp.
220
252
.
5.
Peskin
,
C. S.
,
David
,
M.
, and
McQueen
,
D. M.
,
1989
, “
A Three-Dimensional Computational Method for Blood Flow in the Heart: I. Immersed Elastic Fibers in a Viscous Incompressible Fluid
,”
J. Comput. Phys.
,
81
, pp.
372
405
.
6.
Peskin
,
C. S.
,
David
,
M.
, and
McQueen
,
D. M.
,
1989
, “
A Three-Dimensional Computational Method for Blood Flow in the Heart: II. Contractile Fibers
,”
J. Comput. Phys.
,
82
, pp.
289
298
.
7.
Peskin
,
C. S.
,
David
,
M.
, and
McQueen
,
D. M.
,
1995
, “
A General Method for the Computer Simulation of Biological Systems Interacting With Fluid
,”
Exp. Biol.
,
61
, pp.
265
276
.
8.
Peskin, C. S., and McQueen D. M., 1996, “Fluid Dynamics of the Heart and Its Valves,” Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, Othmer, Adler, et al., eds., Prentice-Hall Inc., New Jersey, pp. 309–337.
9.
McQueen
,
D. M.
, and
Peskin
,
C. S.
,
1997
, “
Shared-Memory Parallel Vector Implementation of the Immersed Boundary Method For the Computation of Blood Flow in the Beating Mammalian Heart
,”
J. Supercomputing
,
11
, No.
3
, pp.
213
236
.
10.
Patankar, S. V., 1983, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, McGraw-Hill, New York.
11.
Appleton
,
C. P.
, and
Hatle
,
L. K.
,
1992
, “
The Natural History of Left Ventricular Filling Abnormalities: Assessment by Two-Dimensional and Doppler Echocardiography
,”
Echocardiogr.
,
9
, pp.
437
457
.
12.
Stugaard
,
M. D.
,
Smiseth
,
O. A.
,
Riso̸e
,
C.
, and
Ihlen
,
H.
,
1995
, “
Intraventricular Early Diastolic Velocity Profile During Acute Myocardial Ischemia: A Color M-Mode Doppler Echocardiographic Study
,”
J. Am. Soc. Echocardiogr.
,
8
, pp.
270
279
.
13.
Taylor
,
R.
,
Waggoner
,
A.
,
1992
, “
Doppler Assessment of Left Ventricular Diastolic Function: A Review
,”
J. Am. Soc. Echocardiogr.
,
5
, pp.
603
612
.
14.
Yoganathan
,
A. P.
,
Lemmon
,
J. D.
,
Kim
,
Y. H.
,
Walker
,
P. G.
,
Levine
,
R. A.
, and
Vesier
,
C. C.
,
1994
, “
A Computational Study of a Thin-Walled Three-Dimensional Left Ventricle During Early Systole
,”
ASME J. Biomech. Eng.
,
116
, pp.
307
314
.
15.
Yoganathan
,
A. P.
,
Lemmon
,
J. D.
,
Kim
,
Y. H.
,
Levine
,
R. A.
, and
Vesier
,
C. C.
,
1995
, “
A Three-Dimensional Computational Investigation of Intraventricular Fluid Dynamics: Examination Into the Initiation of Systolic Anterior Motion of the Mitral Valve Leaflets
,”
ASME J. Biomech. Eng.
,
117
, pp.
94
102
.
16.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
, pp.
745
762
.
17.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transf.
,
15
, pp.
1787
1795
.
18.
Hutchins
,
G. M.
,
Bulkley
,
B. H.
,
Moore
,
G. W.
,
Piasio
,
M. A.
, and
Lohr
,
F. T.
,
1978
, “
Shape of the Human Cardiac Ventricles
,”
Am. J. Cardiol.
,
41
, pp.
646
654
.
19.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Verrier
,
E. D.
, and
Eberhart
,
R. C.
,
1994
, “
Anatomic Basis for Valve Modeling
,”
J. Heart Valve Dis.
,
3
, pp.
491
496
.
20.
Ranganathan
,
N.
,
Lam
,
J. H. C.
,
Wigle
,
E. D.
, and
Silver
,
M. D.
,
1970
, “
Morphology of the Human Mitral Valve. II: The Valve Leaflets
,”
Circulation
,
41
, pp.
459
467
.
21.
Bellhouse, B. J., 1972, “The Fluid Mechanics of Heart Valves,” Cardiovascular Fluid Dynamics, D. H. Bergel, ed., Academic Press, New York, pp. 261–285.
22.
Reul
,
H.
,
Talukder
,
N.
, and
Mueller
,
E. W.
,
1980
, “
Fluid Mechanics of the Natural Mitral Valve
,”
J. Biomech.
,
14
, pp.
361
372
.
23.
Oh
,
J. K.
,
Appleton
,
C. P.
,
Hatle
,
L. K.
,
Nishimura
,
R. A.
,
Seward
,
J. B.
, and
Tajik
,
A. J.
,
1997
, “
The Noninvasive Assessment of Left Ventricular Diastolic Function With Two-Dimensional and Doppler Echocardiography
,”
J. Am. Soc. Echocardiogr.
,
10
, pp.
246
270
.
24.
Appleton
,
C. P.
,
Hatle
,
L. K.
, and
Popp
,
R. L.
,
1988
, “
Relation of Transmitral Flow Patterns to Left Ventricular Diastolic Function: New Insights From a Combined Hemodynamic and Doppler Echocardiographic Study
,”
J. Am. Coll. Cardiol.
,
12
, pp.
426
440
.
25.
Walker
,
P. G.
,
Cranney
,
G. B.
,
Grimes
,
R. Y.
,
Delatore
,
J.
,
Rectenwald
,
J.
,
Pohost
,
G. M.
, and
Yoganathan
,
A. P.
,
1996
, “
Three-Dimensional Reconstruction of the Flow in a Human Left Heart by Using Magnetic Resonance Phase Velocity Encoding
,”
Ann. Biomed. Eng.
,
24
, pp.
139
147
.
26.
Bot
,
H.
,
Verburg
,
J.
,
Delemare
,
B. J.
, and
Strackee
,
J.
,
1990
, “
Determinants of the Occurrence of Vortex Rings in the Left Ventricle During Diastole
,”
J. Biomech.
,
23
, pp.
607
615
.
27.
Kim
,
W. Y.
,
Bisgaard
,
T.
,
Nielsen
,
S. L.
,
Poulsen
,
J. K.
,
Pedersen
,
E. M.
,
Hasenkam
,
M.
, and
Yoganathan
,
A. P.
,
1994
, “
Two-Dimensional Mitral Flow Velocity Profiles in Pig Models Using Epicardial Doppler Echocardiography
,”
J. Am. Coll. Cardiol.
,
24
, pp.
532
545
.
28.
Jones
,
C. J.
,
Song
,
G. J.
, and
Gibson
,
D. G.
,
1991
, “
An Echocardiographic Assessment of Atrial Mechanical Behavior
,”
Br. Heart J.
,
65
, pp.
31
36
.
29.
Gutman
,
J.
,
Wang
,
Y. S.
,
Wahr
,
D.
, and
Schiller
,
N. B.
,
1983
, “
Normal Left Atrial Function Determined by Two-Dimensional Echocardiography
,”
Am. J. Cardiol.
,
51
, pp.
336
340
.
30.
Courtois
,
M.
,
Kovacs
,
S. J.
, and
Ludbrook
,
P. A.
,
1988
, “
Transmitral Pressure–Flow Velocity Relation: Importance of Regional Pressure Gradients in the Left Ventricle During Diastole
,”
Circulation
,
78
, pp.
661
671
.
You do not currently have access to this content.