Cells of the intervertebral disc exhibit spatial variations in phenotype and morphology that may be related to differences in their local mechanical environments. In this study, the stresses, strains, and dilatations in and around cells of the intervertebral disc were studied with an analytical model of the cell as a mechanical inclusion embedded in a transversely isotropic matrix. In response to tensile loading of the matrix, the local mechanical environment of the cell differed among the anatomic regions of the disc and was strongly influenced by changes in both matrix anisotropy and parameters of cell geometry. The results of this study suggest that the local cellular mechanical environment may play a role in determining both cell morphology in situ and the inhomogeneous response to mechanical loading observed in cells of the disc. [S0148-0731(00)00603-8]

1.
Taylor, J. R., and Twomey, L. T., 1988, “The Development of the Human Intervertebral Disc,” The Biology of the Intervertebral Disc, P. Ghosh, ed., CRC Press, Boca Raton, FL, 1, pp. 39–82.
2.
Oegema
,
T. R.
, Jr.
,
1993
, “
Biochemistry of the Intervertebral Disc
,”
Clin. Sports Med.
,
12
, pp.
419
439
.
3.
Errington
,
R. J.
,
Puustjarvi
,
K.
,
White
,
I. R. F.
,
Roberts
,
S.
, and
Urban
,
J. P. G.
,
1998
, “
Characterization of Cytoplasm-Filled Processes in Cells of the Intervertebral Disc
,”
J. Anat.
,
192
, pp.
369
378
.
4.
Higuchi
,
M.
, and
Abe
,
K.
,
1987
, “
Postmortem Changes in Ultrastructures of the Mouse Intervertebral Disc
,”
Spine
,
12
, pp.
48
52
.
5.
Postacchini
,
F.
,
Bellocci
,
M.
, and
Massobrio
,
M.
,
1984
, “
Morphologic Changes in Anulus Fibrosus During Aging: An Ultrastructural Study in Rats
,”
Spine
,
9
, pp.
596
603
.
6.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
, pp.
75
88
.
7.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine
,
15
, pp.
402
410
.
8.
Trout
,
J. J.
,
Buckwalter
,
J. A.
,
Moore
,
K. C.
, and
Landas
,
S. K.
,
1982
, “
Ultrastructure of the Human Intervertebral Disc: I. Changes in Notochordal Cells With Age
,”
Tissue Cell
,
14
, pp.
359
369
.
9.
Weidenbaum, M., Iatridis, J. C., Setton, L. A., Foster, R. J., and Mow, V. C., 1996, “Mechanical Behavior of the Intervertebral Disc and the Effects of Degeneration,” Low Back Pain: A Scientific and Clinical Overview, J. N. Weinstein et al., eds., American Academy of Orthopaedic Surgeons, Rosemont, IL, pp. 557–582.
10.
Urban, J. P. G., 1993, “The Effect of Physical Factors on Disc Cell Metabolism,” Musculoskeletal Soft-Tissue Aging: Impact on Mobility, J. A. Buckwalter et al., eds., American Academy of Orthopaedic Surgeons, Rosemont, IL, pp. 391–412.
11.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” Basic Orthopaedic Biomechanics, V. C. Mow et al., eds., Lippincott-Raven Publishers, Philadelphia, pp. 179–207.
12.
Hutton
,
W. C.
,
Toribatake
,
Y.
,
Elmer
,
W. A.
,
Ganey
,
T. M.
,
Tomita
,
K.
, and
Whitesides
,
T. E.
,
1998
, “
The Effect of Compressive Force Applied to the Intervertebral Disc in Vivo: A Study of Proteoglycans and Collagen
,”
Spine
,
23
, pp.
2524
2537
.
13.
Iatridis
,
J. C.
,
Mente
,
P. L.
,
Stokes
,
I. A. F.
,
Aronsson
,
D. D.
, and
Alini
,
M.
,
1999
, “
Compression-Induced Changes in Intervertebral Disc Properties in a Rat Tail Model
,”
Spine
,
24
, pp.
996
1002
.
14.
Lotz
,
J. C.
,
Colliou
,
O. K.
,
Chin
,
J. R.
,
Duncan
,
N. A.
, and
Liebenberg
,
E.
,
1998
, “
Compression-Induced Degeneration of the Intervertebral Disc: An in Vivo Mouse Model and Finite Element Study
,”
Spine
,
23
, pp.
2493
2506
.
15.
Baer
,
A. E.
,
Wang
,
J. Y.
,
Kraus
,
V. B.
, and
Setton
,
L. A.
,
2000
, “
Changes in Aggrecan and Collagen Gene Expression in Anulus Fibrosus Cells Subjected to Static Compression In Vitro
,”
Trans. Orthopaedic Res. Soc.
,
25
, p.
336
336
.
16.
Handa
,
T.
,
Ishihara
,
H.
,
Ohshima
,
H.
,
Osada
,
R.
,
Tsuji
,
H.
, and
Obata
,
K.
,
1997
, “
Effects of Hydrostatic Pressure on Matrix Synthesis and Matrix Metalloproteinase Production in the Human Lumbar Intervertebral Disc
,”
Spine
,
22
, pp.
1085
1091
.
17.
Hutton
,
W. C.
,
Elmer
,
W. A.
,
Boden
,
S. D.
,
Hyon
,
S.
,
Toribatake
,
Y.
,
Tomita
,
K.
, and
Hair
,
G. A.
,
1999
, “
The Effect of Hydrostatic Pressure on Intervertebral Disc Metabolism
,”
Spine
,
24
, pp.
1507
1515
.
18.
Ishihara
,
H.
,
McNally
,
D. S.
,
Urban
,
J. P. G.
, and
Hall
,
A. C.
,
1996
, “
Effects of Hydrostatic Pressure on Matrix Synthesis in Different Regions of the Intervertebral Disc
,”
J. Appl. Physiol.
,
80
, pp.
839
846
.
19.
Ohshima
,
H.
,
Urban
,
J. P. G.
, and
Bergel
,
D. H.
,
1995
, “
Effect of Static Load on Matrix Synthesis Rates in the Intervertebral Disc Measured In Vitro by a New Perfusion Technique
,”
J. Orthop. Res.
,
13
, pp.
22
29
.
20.
Mow
,
V. C.
,
Wang
,
C. C.
, and
Hung
,
C. T.
,
1999
, “
The Extracellular Matrix, Interstitial Fluid and Ions as a Mechanical Signal Transducer in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
, pp.
41
58
.
21.
Jain
,
M. K.
,
Berg
,
R. A.
, and
Tandon
,
G. P.
,
1990
, “
Mechanical Stress and Cellular Metabolism in Living Soft Tissue Composites
,”
Biomaterials
,
11
, pp.
465
472
.
22.
Bachrach
,
N. M.
,
Valhmu
,
W. B.
,
Stazzone
,
E.
,
Ratcliffe
,
A.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1995
, “
Changes in Proteoglycan Synthesis of Chondrocytes in Articular Cartilage Are Associated With the Time-Dependent Changes in Their Mechanical Environment
,”
J. Biomech.
,
28
, pp.
1561
1569
.
23.
Guilak, F., and Mow, V. C., 1992, “Determination of the Mechanical Response of the Chondrocyte In Situ Using Finite Element Modeling and Confocal Microscopy,” Advances in Bioengineering, M. W. Bidez, ed., ASME BED-Vol. 22, pp. 21–23.
24.
Mow, V. C., Sun, D. N., Guo, X. E., Hung, C. T., and Lai, W. M., 1999, “Chondrocyte-Extracellular Matrix Interactions During Osmotic Swelling,” Proc. 1999 Bioengineering Conference, V. K. Goel, et al., eds., ASME BED-Vol. 42, pp. 133–134.
25.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1999
, “
Modelling of Location- and Time-Dependent Deformation of Chondrocytes During Cartilage Loading
,”
J. Biomech.
,
32
, pp.
563
572
.
26.
Guilak
,
F.
,
Ting-Beall
,
H. P.
,
Baer
,
A. E.
,
Trickey
,
W. R.
,
Erickson
,
G. R.
, and
Setton
,
L. A.
,
1999
, “
Viscoelastic Properties of Intervertebral Disc Cells: Identification of Two Biomechanically Distinct Cell Populations
,”
Spine
,
24
, pp.
2475
2483
.
27.
Elliott, D. M., and Setton, L. A., 1999, “Direct Measurement of a Complete Set of Orthotropic Material Properties for the Human Anulus Fibrosus in Tension,” Proc. 1999 Bioengineering Conference, V. K. Goel et al., eds., ASME BED-Vol. 42, pp. 75–76.
28.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1996
, “
Anisotropic Shear Behavior of the Anulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Trans. Orthopaedic Res. Soc.
,
21
, p.
271
271
.
29.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Anulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
, pp.
814
819
.
30.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1999
, “
Shear Mechanical Properties of Human Lumbar Anulus Fibrosus
,”
J. Orthop. Res.
,
17
, pp.
732
737
.
31.
Chen
,
W. T.
,
1968
, “
Axisymmetric Stress Field Around Spheroidal Inclusions and Cavities in a Transversely Isotropic Material
,”
ASME J. Appl. Mech.
,
35
, pp.
770
773
.
32.
Green, A. E., and Zerna, W., 1968, Theoretical Elasticity, Clarendon, Oxford.
33.
Lai, W. M., Rubin, D., and Krempl, E., 1993, Introduction to Continuum Mechanics, Pergamon Press, New York.
34.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.
35.
Goodier
,
J. N.
,
1933
, “
Concentration of Stress Around Spherical and Cylindrical Inclusions and Flaws
,”
Trans. ASME
,
55
, Paper No. APM-55-7, pp.
39
44
.
36.
Stokes
,
I. A. F.
,
1987
, “
Surface Strain on Human Intervertebral Discs
,”
J. Orthop. Res.
,
5
, pp.
348
355
.
37.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
, pp.
1027
1045
.
38.
Zhu
,
W.
,
Chern
,
K. Y.
, and
Mow
,
V. C.
,
1994
, “
Anisotropic Viscoelastic Shear Properties of Bovine Meniscus
,”
Clin. Orthop. Related Res.
,
306
, pp.
34
45
.
39.
Buschmann
,
M. D.
,
Hunziker
,
E. B.
,
Kim
,
Y.-J.
, and
Grodzinsky
,
A. J.
,
1996
, “
Altered Aggrecan Synthesis Correlates With Cell and Nucleus Structure in Statically Compressed Cartilage
,”
J. Cell. Sci.
,
109
, pp.
499
508
.
40.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1995
, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
,
13
, pp.
410
421
.
41.
Ishihara
,
H.
,
Warensjo
,
K.
,
Roberts
,
S.
, and
Urban
,
J. P. G.
,
1997
, “
Proteoglycan Synthesis in the Intervertebral Disc Nucleus: The Role of Extracellular Osmolality
,”
Am. J. Phys.
,
272
, pp.
C1499–C1506
C1499–C1506
.
42.
Errington
,
R. J.
,
Fricker
,
M. D.
,
Wood
,
J. L.
,
Hall
,
A. C.
, and
White
,
N. S.
,
1997
, “
Four-Dimensional Imaging of Living Chondrocytes in Cartilage Using Confocal Microscopy: A Pragmatic Approach
,”
Am. J. Phys.
,
272
, pp.
C1040–C1051
C1040–C1051
.
43.
Lang
,
F.
,
Busch
,
G. L.
,
Ritter
,
M.
,
Vo¨lkl
,
H.
,
Waldegger
,
S.
,
Gulbins
,
E.
, and
Ha¨ussinger
,
D.
,
1998
, “
Functional Significance of Cell Volume Regulatory Mechanisms
,”
Physiol. Rev.
,
78
, pp.
247
306
.
44.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
45.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
46.
Bayliss
,
M. T.
,
Urban
,
J. P. G.
,
Johnstone
,
B.
, and
Holm
,
S. H.
,
1986
, “
In Vitro Method for Measuring Synthesis Rates in the Intervertebral Disc
,”
J. Orthop. Res.
,
4
, pp.
10
17
.
47.
Langille
,
B. L.
, and
Adamson
,
S. L.
,
1981
, “
Relationship Between Blood Flow Direction and Endothelial Cell Orientation at Arterial Branch Sites in Rabbits and Mice
,”
Circ. Res.
,
48
, pp.
481
488
.
48.
Nerem
,
R. M.
,
Levesque
,
M. J.
, and
Cornhill
,
J. F.
,
1981
, “
Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow
,”
ASME J. Biomech. Eng.
,
103
, pp.
172
176
.
49.
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
, pp.
177
185
.
50.
Smith
,
R. L.
,
Donlon
,
B. S.
,
Gupta
,
M. K.
,
Mohtai
,
M.
,
Das
,
P.
,
Carter
,
D. R.
,
Cooke
,
J.
,
Gibbons
,
G.
,
Hutchinson
,
N.
, and
Schurman
,
D. J.
,
1995
, “
Effects of Fluid-Induced Shear on Articular Chondrocyte Morphology and Metabolism In Vitro
,”
J. Orthop. Res.
,
13
, pp.
824
831
.
51.
Buck
,
R. C.
,
1980
, “
Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum
,”
Exp. Cell Res.
,
127
, pp.
470
474
.
52.
Dartsch
,
P. C.
, and
Ha¨mmerle
,
H.
,
1986
, “
Orientation Response of Arterial Smooth Muscle Cells to Mechanical Stimulation
,”
Eur. J. Cell Biol.
,
41
, pp.
339
346
.
53.
Ives
,
C. L.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
,
1986
, “
Mechanical Effects on Endothelial Cell Morphology: In Vitro Assessment
,”
In Vitro Cell Dev. Biol.
,
22
, pp.
500
507
.
54.
Kanda
,
K.
, and
Matsuda
,
T.
,
1994
, “
Mechanical Stress-Induced Orientation and Ultrastructural Change of Smooth Muscle Cells Cultured in Three-Dimensional Collagen Lattices
,”
Cell Transplant
,
3
, pp.
481
492
.
You do not currently have access to this content.